Production MetricsΒΆ
vLLM exposes a number of metrics that can be used to monitor the health of the system. These metrics are exposed via the /metrics
endpoint on the vLLM OpenAI compatible API server.
You can start the server using Python, or using Docker:
Then query the endpoint to get the latest metrics from the server:
Output
$ curl http://0.0.0.0:8000/metrics
# HELP vllm:iteration_tokens_total Histogram of number of tokens per engine_step.
# TYPE vllm:iteration_tokens_total histogram
vllm:iteration_tokens_total_sum{model_name="unsloth/Llama-3.2-1B-Instruct"} 0.0
vllm:iteration_tokens_total_bucket{le="1.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="8.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="16.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="32.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="64.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="128.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="256.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="512.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
...
The following metrics are exposed:
Code
class Metrics:
"""
vLLM uses a multiprocessing-based frontend for the OpenAI server.
This means that we need to run prometheus_client in multiprocessing mode
See https://prometheus.github.io/client_python/multiprocess/ for more
details on limitations.
"""
labelname_finish_reason = "finished_reason"
labelname_waiting_lora_adapters = "waiting_lora_adapters"
labelname_running_lora_adapters = "running_lora_adapters"
labelname_max_lora = "max_lora"
_gauge_cls = prometheus_client.Gauge
_counter_cls = prometheus_client.Counter
_histogram_cls = prometheus_client.Histogram
def __init__(self, labelnames: list[str], vllm_config: VllmConfig):
# Unregister any existing vLLM collectors (for CI/CD)
self._unregister_vllm_metrics()
max_model_len = vllm_config.model_config.max_model_len
# Use this flag to hide metrics that were deprecated in
# a previous release and which will be removed future
self.show_hidden_metrics = vllm_config.observability_config.show_hidden_metrics
# System stats
# Scheduler State
self.gauge_scheduler_running = self._gauge_cls(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames,
multiprocess_mode="sum",
)
self.gauge_scheduler_waiting = self._gauge_cls(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames,
multiprocess_mode="sum",
)
self.gauge_lora_info = self._gauge_cls(
name="vllm:lora_requests_info",
documentation="Running stats on lora requests.",
labelnames=[
self.labelname_running_lora_adapters,
self.labelname_max_lora,
self.labelname_waiting_lora_adapters,
],
multiprocess_mode="livemostrecent",
)
# KV Cache Usage in %
self.gauge_gpu_cache_usage = self._gauge_cls(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum",
)
# Iteration stats
self.counter_num_preemption = self._counter_cls(
name="vllm:num_preemptions_total",
documentation="Cumulative number of preemption from the engine.",
labelnames=labelnames,
)
self.counter_prompt_tokens = self._counter_cls(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
)
self.counter_generation_tokens = self._counter_cls(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
)
self.histogram_iteration_tokens = self._histogram_cls(
name="vllm:iteration_tokens_total",
documentation="Histogram of number of tokens per engine_step.",
labelnames=labelnames,
buckets=[1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
)
self.histogram_time_to_first_token = self._histogram_cls(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001,
0.005,
0.01,
0.02,
0.04,
0.06,
0.08,
0.1,
0.25,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
20.0,
40.0,
80.0,
160.0,
640.0,
2560.0,
],
)
# Deprecated in 0.11 - Renamed as vllm:inter_token_latency_seconds
# TODO: in 0.12, only enable if show_hidden_metrics=True
self.histogram_time_per_output_token = self._histogram_cls(
name="vllm:time_per_output_token_seconds",
documentation=(
"Histogram of time per output token in seconds."
"DEPRECATED: Use vllm:inter_token_latency_seconds instead."
),
labelnames=labelnames,
buckets=[
0.01,
0.025,
0.05,
0.075,
0.1,
0.15,
0.2,
0.3,
0.4,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
20.0,
40.0,
80.0,
],
)
self.histogram_inter_token_latency = self._histogram_cls(
name="vllm:inter_token_latency_seconds",
documentation="Histogram of inter token latency in seconds.",
labelnames=labelnames,
buckets=[
0.01,
0.025,
0.05,
0.075,
0.1,
0.15,
0.2,
0.3,
0.4,
0.5,
0.75,
1.0,
2.5,
5.0,
7.5,
10.0,
20.0,
40.0,
80.0,
],
)
# Request stats
# Latency
request_latency_buckets = [
0.3,
0.5,
0.8,
1.0,
1.5,
2.0,
2.5,
5.0,
10.0,
15.0,
20.0,
30.0,
40.0,
50.0,
60.0,
120.0,
240.0,
480.0,
960.0,
1920.0,
7680.0,
]
self.histogram_e2e_time_request = self._histogram_cls(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
self.histogram_queue_time_request = self._histogram_cls(
name="vllm:request_queue_time_seconds",
documentation="Histogram of time spent in WAITING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
self.histogram_inference_time_request = self._histogram_cls(
name="vllm:request_inference_time_seconds",
documentation="Histogram of time spent in RUNNING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
self.histogram_prefill_time_request = self._histogram_cls(
name="vllm:request_prefill_time_seconds",
documentation="Histogram of time spent in PREFILL phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
self.histogram_decode_time_request = self._histogram_cls(
name="vllm:request_decode_time_seconds",
documentation="Histogram of time spent in DECODE phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets,
)
# Metadata
self.histogram_num_prompt_tokens_request = self._histogram_cls(
name="vllm:request_prompt_tokens",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_num_generation_tokens_request = self._histogram_cls(
name="vllm:request_generation_tokens",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_max_num_generation_tokens_request = self._histogram_cls(
name="vllm:request_max_num_generation_tokens",
documentation="Histogram of maximum number of requested generation tokens.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_n_request = self._histogram_cls(
name="vllm:request_params_n",
documentation="Histogram of the n request parameter.",
labelnames=labelnames,
buckets=[1, 2, 5, 10, 20],
)
self.histogram_max_tokens_request = self._histogram_cls(
name="vllm:request_params_max_tokens",
documentation="Histogram of the max_tokens request parameter.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.counter_request_success = self._counter_cls(
name="vllm:request_success_total",
documentation="Count of successfully processed requests.",
labelnames=labelnames + [Metrics.labelname_finish_reason],
)
Note: when metrics are deprecated in version X.Y
, they are hidden in version X.Y+1
but can be re-enabled using the --show-hidden-metrics-for-version=X.Y
escape hatch, and are then removed in version X.Y+2
.