vllm.model_executor.models.swin ¶
SwinAttention ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
output instance-attribute
¶
output = SwinSelfOutput(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
self instance-attribute
¶
self = SwinSelfAttention(
config,
dim,
num_heads,
window_size,
quant_config=quant_config,
prefix=f"{prefix}.self",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
num_heads: int,
window_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
attention_mask: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
SwinEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
layers instance-attribute
¶
layers = ModuleList(
[
(
SwinStage(
config=config,
dim=int(embed_dim * 2**layer_idx),
input_resolution=(
grid_size[0] // 2**layer_idx,
grid_size[1] // 2**layer_idx,
),
depth=depths[layer_idx],
num_heads=num_heads[layer_idx],
drop_path=dpr[
(sum(depths[:layer_idx])) : (
sum(depths[: (layer_idx + 1)])
)
],
downsample=SwinPatchMerging
if layer_idx < num_layers - 1
else None,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_layers))
]
)
__init__ ¶
__init__(
config: SwinConfig,
grid_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
input_dimensions: tuple[int, int],
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
SwinIntermediate ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = ColumnParallelLinear(
dim,
int(mlp_ratio * dim),
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
SwinLayer ¶
Bases: SwinLayer
Source code in vllm/model_executor/models/swin.py
attention instance-attribute
¶
attention = SwinAttention(
config,
dim,
num_heads,
window_size=window_size,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
intermediate instance-attribute
¶
intermediate = SwinIntermediate(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.intermediate",
)
output instance-attribute
¶
output = SwinOutput(
config,
dim,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
input_resolution: int,
num_heads: int,
drop_path_rate: float = 0.0,
shift_size: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
SwinModel ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
encoder instance-attribute
¶
encoder = SwinEncoder(
config,
patch_grid,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
)
__init__ ¶
__init__(
config: SwinConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
pixel_values: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = None,
) -> tuple[Tensor]
Source code in vllm/model_executor/models/swin.py
load_weights ¶
Source code in vllm/model_executor/models/swin.py
SwinOutput ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = RowParallelLinear(
int(mlp_ratio * dim),
dim,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
SwinSelfAttention ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|
qkv instance-attribute
¶
qkv = QKVParallelLinear(
hidden_size=dim,
head_size=attention_head_size,
total_num_heads=num_attention_heads,
bias=qkv_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv",
)
relative_position_bias_table instance-attribute
¶
relative_position_bias_table = Parameter(
zeros(
(2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads,
)
)
relative_position_index instance-attribute
¶
window_size instance-attribute
¶
window_size = (
window_size
if isinstance(window_size, Iterable)
else (window_size, window_size)
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
num_heads: int,
window_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
_get_rel_pos_bias ¶
_get_rel_pos_bias() -> Tensor
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
attention_mask: Optional[FloatTensor] = None,
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/swin.py
SwinSelfOutput ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
dense instance-attribute
¶
dense = RowParallelLinear(
input_size=dim,
output_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
SwinStage ¶
Bases: Module
Source code in vllm/model_executor/models/swin.py
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
|
blocks instance-attribute
¶
blocks = ModuleList(
[
(
SwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
drop_path_rate=drop_path[layer_idx],
shift_size=0
if layer_idx % 2 == 0
else window_size // 2,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}",
)
)
for layer_idx in (range(depth))
]
)
downsample instance-attribute
¶
downsample = downsample(
input_resolution, dim=dim, norm_layer=LayerNorm
)
__init__ ¶
__init__(
config: SwinConfig,
dim: int,
input_resolution: int,
depth: int,
num_heads: int,
drop_path: list[float],
downsample: Optional[SwinPatchMerging] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/swin.py
forward ¶
forward(
hidden_states: Tensor,
input_dimensions: tuple[int, int],
head_mask: Optional[FloatTensor] = None,
output_attentions: Optional[bool] = False,
always_partition: Optional[bool] = False,
) -> tuple[Tensor]