vllm.model_executor.models.qwen2_moe ¶
Inference-only Qwen2MoE model compatible with HuggingFace weights.
Qwen2MoeAttention ¶
Bases: Module
Source code in vllm/model_executor/models/qwen2_moe.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
attn instance-attribute
¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
**(
{
"layer_idx": extract_layer_index(prefix),
"dual_chunk_attention_config": dual_chunk_attention_config,
}
if dual_chunk_attention_config
else {}
),
)
dual_chunk_attention_config instance-attribute
¶
o_proj instance-attribute
¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb instance-attribute
¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
dual_chunk_attention_config=dual_chunk_attention_config,
)
__init__ ¶
__init__(
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
dual_chunk_attention_config: Optional[
dict[str, Any]
] = None,
) -> None
Source code in vllm/model_executor/models/qwen2_moe.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
|
forward ¶
Source code in vllm/model_executor/models/qwen2_moe.py
Qwen2MoeDecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/qwen2_moe.py
mlp instance-attribute
¶
mlp = Qwen2MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
post_attention_layernorm instance-attribute
¶
post_attention_layernorm = RMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn instance-attribute
¶
self_attn = Qwen2MoeAttention(
hidden_size=hidden_size,
num_heads=num_attention_heads,
num_kv_heads=num_key_value_heads,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
dual_chunk_attention_config=dual_chunk_attention_config,
)
__init__ ¶
__init__(
config: Qwen2MoeConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_moe.py
forward ¶
Source code in vllm/model_executor/models/qwen2_moe.py
Qwen2MoeForCausalLM ¶
Bases: Module
, SupportsPP
, SupportsLoRA
Source code in vllm/model_executor/models/qwen2_moe.py
fall_back_to_pt_during_load class-attribute
instance-attribute
¶
lm_head instance-attribute
¶
lm_head = ParallelLMHead(
vocab_size,
hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
make_empty_intermediate_tensors instance-attribute
¶
model instance-attribute
¶
model = Qwen2MoeModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_moe.py
compute_logits ¶
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen2_moe.py
get_expert_mapping ¶
get_input_embeddings ¶
Qwen2MoeMLP ¶
Bases: Module
Source code in vllm/model_executor/models/qwen2_moe.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
gate_up_proj instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
__init__ ¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_moe.py
Qwen2MoeModel ¶
Bases: Module
Source code in vllm/model_executor/models/qwen2_moe.py
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
make_empty_intermediate_tensors instance-attribute
¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_moe.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/qwen2_moe.py
get_expert_mapping ¶
Source code in vllm/model_executor/models/qwen2_moe.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/qwen2_moe.py
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
Qwen2MoeSparseMoeBlock ¶
Bases: Module
Source code in vllm/model_executor/models/qwen2_moe.py
experts instance-attribute
¶
experts = FusedMoE(
num_experts=num_experts,
top_k=num_experts_per_tok,
hidden_size=hidden_size,
intermediate_size=moe_intermediate_size,
reduce_results=False,
renormalize=norm_topk_prob,
quant_config=quant_config,
prefix=f"{prefix}.experts",
)
gate instance-attribute
¶
gate = ReplicatedLinear(
hidden_size,
num_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate",
)
shared_expert instance-attribute
¶
shared_expert = Qwen2MoeMLP(
hidden_size=hidden_size,
intermediate_size=shared_expert_intermediate_size,
hidden_act=hidden_act,
quant_config=quant_config,
reduce_results=must_reduce_shared_expert_outputs(),
prefix=f"{prefix}.shared_expert",
)
__init__ ¶
__init__(
config: Qwen2MoeConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)