vllm.model_executor.models.glm4v ¶
Inference-only CogAgent model compatible with THUDM weights.
EVA2CLIPAttention ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
dense instance-attribute
¶
dense = RowParallelLinear(
hidden_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
query_key_value instance-attribute
¶
query_key_value = QKVParallelLinear(
hidden_size,
head_dim,
num_heads,
quant_config=quant_config,
prefix=f"{prefix}.query_key_value",
)
__init__ ¶
__init__(
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/glm4v.py
forward ¶
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPGLU ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
dense_4h_to_h instance-attribute
¶
dense_4h_to_h = RowParallelLinear(
ffn_hidden_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.dense_4h_to_h",
)
linear_proj instance-attribute
¶
linear_proj = ReplicatedLinear(
in_features,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.linear_proj",
)
merged_proj instance-attribute
¶
merged_proj = MergedColumnParallelLinear(
hidden_size,
[ffn_hidden_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.merged_proj",
)
__init__ ¶
__init__(
config,
in_features,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
The original implementation is the same as:
self.dense_h_to_4h = ColumnParallelLinear(
config.hidden_size,
config.ffn_hidden_size,
bias=False,
quant_config=quant_config,
)
self.gate_proj = ColumnParallelLinear(
config.hidden_size,
config.ffn_hidden_size,
bias=False,
quant_config=quant_config,
)
gate_proj_output, _ = self.gate_proj(x)
dense_h_to_4h_output, _ = self.dense_h_to_4h(x)
x = torch.cat([gate_proj_output, dense_h_to_4h_output], dim=-1)
We merge two ColumnParallelLinear into one MergedColumnParallelLinear:
self.merged_proj = MergedColumnParallelLinear(
config.hidden_size,
[config.ffn_hidden_size] * 2,
bias=False,
quant_config=quant_config,
)
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPMLP ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPModel ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
conv instance-attribute
¶
conv = Conv2d(
in_channels=hidden_size,
out_channels=hidden_size,
kernel_size=2,
stride=2,
)
linear_proj instance-attribute
¶
linear_proj = EVA2CLIPGLU(
config,
in_features=hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.linear_proj",
)
transformer instance-attribute
¶
transformer = EVA2CLIPTransformer(
vision_config,
quant_config=quant_config,
prefix=f"{prefix}.transformer",
)
__init__ ¶
__init__(
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/glm4v.py
forward ¶
images : torch.Tensor Input image tensor with shape (B, C, H, W)
torch.Tensor Transformed tensor with shape (B, L, D)
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPPatchEmbedding ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
proj instance-attribute
¶
proj = Conv2d(
in_channels,
hidden_size,
kernel_size=patch_size,
stride=patch_size,
)
__init__ ¶
Source code in vllm/model_executor/models/glm4v.py
forward ¶
images : torch.Tensor Input image tensor with shape (B, C, H, W)
torch.Tensor Transformed tensor with shape (B, L, D)
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
layers instance-attribute
¶
layers = ModuleList(
[
(
EVA2CLIPTransformerLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/glm4v.py
EVA2CLIPTransformerLayer ¶
Bases: Module
Source code in vllm/model_executor/models/glm4v.py
attention instance-attribute
¶
attention = EVA2CLIPAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
mlp instance-attribute
¶
mlp = EVA2CLIPMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
post_attention_layernorm instance-attribute
¶
post_attention_layernorm = LayerNorm(
hidden_size, eps=layer_norm_eps
)
__init__ ¶
__init__(
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/glm4v.py
forward ¶
Source code in vllm/model_executor/models/glm4v.py
GLM4VDummyInputsBuilder ¶
Bases: BaseDummyInputsBuilder[GLM4VProcessingInfo]
Source code in vllm/model_executor/models/glm4v.py
get_dummy_mm_data ¶
get_dummy_mm_data(
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Optional[
Mapping[str, BaseDummyOptions]
] = None,
) -> MultiModalDataDict
Source code in vllm/model_executor/models/glm4v.py
get_dummy_text ¶
GLM4VForCausalLM ¶
Bases: ChatGLMBaseModel
, SupportsMultiModal
, SupportsLoRA
, SupportsPP
Source code in vllm/model_executor/models/glm4v.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
|
get_input_embeddings class-attribute
instance-attribute
¶
get_input_embeddings = get_input_embeddings
packed_modules_mapping class-attribute
instance-attribute
¶
packed_modules_mapping = {
"query_key_value": ["query_key_value"],
"dense_h_to_4h": ["dense_h_to_4h"],
"merged_proj": ["gate_proj", "dense_h_to_4h"],
}
__init__ ¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
transformer_type: type[GLM4VModel] = GLM4VModel,
) -> None
Source code in vllm/model_executor/models/glm4v.py
_parse_and_validate_image_input ¶
_parse_and_validate_image_input(
**kwargs: object,
) -> Optional[GLMVImagePixelInputs]
Source code in vllm/model_executor/models/glm4v.py
_process_image_input ¶
_process_image_input(
image_input: GLMVImagePixelInputs,
) -> Tensor
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/glm4v.py
get_mm_mapping ¶
get_mm_mapping() -> MultiModelKeys
Get the module prefix in multimodal models
Source code in vllm/model_executor/models/glm4v.py
get_multimodal_embeddings ¶
get_multimodal_embeddings(
**kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/glm4v.py
get_placeholder_str classmethod
¶
GLM4VModel ¶
Bases: ChatGLMModel
Source code in vllm/model_executor/models/glm4v.py
vision instance-attribute
¶
vision = EVA2CLIPModel(
config, quant_config, prefix=f"{prefix}.vision"
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/glm4v.py
GLM4VMultiModalProcessor ¶
Bases: BaseMultiModalProcessor[GLM4VProcessingInfo]
Source code in vllm/model_executor/models/glm4v.py
_get_mm_fields_config ¶
_get_prompt_updates ¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/glm4v.py
GLM4VProcessingInfo ¶
Bases: BaseProcessingInfo
Source code in vllm/model_executor/models/glm4v.py
GLM4VProcessor ¶
This model doesn't define its own HF processor, so we implement our own one here.
Source code in vllm/model_executor/models/glm4v.py
image_transform instance-attribute
¶
image_transform = Compose(
[
Resize(
(image_size, image_size), interpolation=BICUBIC
),
ToTensor(),
Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
__call__ ¶
__call__(
text: Optional[
Union[TextInput, list[TextInput]]
] = None,
images: Optional[
Union[ImageInput, list[ImageInput]]
] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature
Source code in vllm/model_executor/models/glm4v.py
__init__ ¶
__init__(
config: ChatGLMConfig, tokenizer: PreTrainedTokenizer
) -> None
Source code in vllm/model_executor/models/glm4v.py
GLMVImagePixelInputs ¶
Bases: TensorSchema
Dimensions
- b: Batch size
- c: Number of channels (3)
- h: Height of image
- w: Width of image