vllm.model_executor.layers.quantization.utils.w8a8_utils ¶
CUTLASS_BLOCK_FP8_SUPPORTED module-attribute
¶
CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()
USE_ROWWISE_TORCH_SCALED_MM module-attribute
¶
USE_ROWWISE_TORCH_SCALED_MM = (
is_rocm()
and parse(__version__) >= parse("2.7")
and has_device_capability(94)
)
Fp8LinearOp ¶
This class executes a FP8 linear layer using cutlass if supported and torch.scaled_mm otherwise. It needs to be a class instead of a method so that config can be read in the init method, as reading config is not allowed inside forward.
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
|
quant_fp8 instance-attribute
¶
quant_fp8 = QuantFP8(
static=act_quant_static,
group_shape=act_quant_group_shape,
num_token_padding=output_padding,
)
__init__ ¶
__init__(
act_quant_static: bool,
act_quant_group_shape: GroupShape = PER_TENSOR,
pad_output: Optional[bool] = None,
)
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
apply ¶
apply(
input: Tensor,
weight: Tensor,
weight_scale: Tensor,
out_dtype: Optional[dtype] = None,
input_scale: Optional[Tensor] = None,
input_scale_ub: Optional[Tensor] = None,
bias: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
all_close_1d ¶
convert_to_channelwise ¶
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
cutlass_block_fp8_supported ¶
cutlass_block_fp8_supported() -> bool
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
cutlass_fp8_supported ¶
cutlass_fp8_supported() -> bool
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
cutlass_group_gemm_supported ¶
cutlass_group_gemm_supported() -> bool
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
cutlass_w8a8_scaled_mm ¶
cutlass_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
**kwargs,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
dispatch_w8a8_scaled_mm ¶
dispatch_w8a8_scaled_mm(
preferred_backend: str,
per_tensor_weights: bool,
per_tensor_activations: bool,
) -> Callable[..., Tensor]
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
flashinfer_w8a8_scaled_mm ¶
flashinfer_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
**kwargs,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
maybe_create_device_identity ¶
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
normalize_e4m3fn_to_e4m3fnuz ¶
normalize_e4m3fn_to_e4m3fnuz(
weight: Tensor,
weight_scale: Tensor,
input_scale: Optional[Tensor] = None,
) -> tuple[Tensor, Tensor, Optional[Tensor]]
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
per_tensor_dequantize ¶
requantize_with_max_scale ¶
requantize_with_max_scale(
weight: Tensor,
weight_scale: Tensor,
logical_widths: list[int],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
rocm_per_tensor_w8a8_scaled_mm ¶
rocm_per_tensor_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
rocm_per_tensor_w8a8_scaled_mm_fake ¶
rocm_per_tensor_w8a8_scaled_mm_fake(
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
rocm_per_tensor_w8a8_scaled_mm_impl ¶
rocm_per_tensor_w8a8_scaled_mm_impl(
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
sparse_cutlass_supported ¶
sparse_cutlass_supported() -> bool
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
torch_channelwise_w8a8_scaled_mm ¶
torch_channelwise_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
**kwargs,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
torch_per_tensor_w8a8_scaled_mm ¶
torch_per_tensor_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/utils/w8a8_utils.py
torch_per_token_w8a8_scaled_mm ¶
torch_per_token_w8a8_scaled_mm(
*,
qinput: Tensor,
weight: Tensor,
out_dtype: dtype,
scale_a: Tensor,
scale_b: Tensor,
bias: Tensor,
output_shape: list,
**kwargs,
) -> Tensor