Skip to content

vllm.entrypoints.openai.tool_parsers.granite_tool_parser ΒΆ

logger module-attribute ΒΆ

logger = init_logger(__name__)

GraniteToolParser ΒΆ

Bases: ToolParser

Tool call parser for the granite 3.0 models. Intended for use with the examples/tool_chat_template_granite.jinja template.

Used when --enable-auto-tool-choice --tool-call-parser granite are all set

Source code in vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py
@ToolParserManager.register_module("granite")
class GraniteToolParser(ToolParser):
    """
    Tool call parser for the granite 3.0 models. Intended
    for use with the examples/tool_chat_template_granite.jinja
    template.

    Used when --enable-auto-tool-choice --tool-call-parser granite
    are all set
    """

    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)
        # for granite 3.0, the token `<|tool_call|>`
        self.bot_token = "<|tool_call|>"
        # for granite 3.1, the string `<tool_call>`
        self.bot_string = "<tool_call>"

    def extract_tool_calls(
        self, model_output: str, request: ChatCompletionRequest
    ) -> ExtractedToolCallInformation:
        stripped = (
            model_output.strip()
            .removeprefix(self.bot_token)
            .removeprefix(self.bot_string)
            .lstrip()
        )
        if not stripped or stripped[0] != "[":
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=model_output
            )
        try:
            raw_function_calls = json.loads(stripped)
            if not isinstance(raw_function_calls, list):
                raise Exception(
                    f"Expected dict or list, got {type(raw_function_calls)}"
                )

            logger.debug("Extracted %d tool calls", len(raw_function_calls))
            tool_calls = [
                ToolCall(
                    type="function",
                    function=FunctionCall(
                        name=function_call["name"],
                        # function call args are JSON but as a string
                        arguments=json.dumps(
                            function_call["arguments"], ensure_ascii=False
                        ),
                    ),
                )
                for function_call in raw_function_calls
            ]

            return ExtractedToolCallInformation(
                tools_called=True,
                tool_calls=tool_calls,
                content=None,
            )

        except Exception as e:
            logger.error("Error in extracting tool call from response %s", e)
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=model_output
            )

    def extract_tool_calls_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
        request: ChatCompletionRequest,
    ) -> Union[DeltaMessage, None]:
        start_idx = consume_space(0, current_text)
        if current_text[start_idx:].startswith(self.bot_token):
            start_idx = consume_space(start_idx + len(self.bot_token), current_text)
        if current_text[start_idx:].startswith(self.bot_string):
            start_idx = consume_space(start_idx + len(self.bot_string), current_text)
        if (
            not current_text
            or start_idx >= len(current_text)
            or current_text[start_idx] != "["
        ):
            return DeltaMessage(content=delta_text)

        # bit mask flags for partial JSON parsing. If the name hasn't been
        # sent yet, don't allow sending
        # an incomplete string since OpenAI only ever (as far as I have
        # seen) allows sending the entire tool/ function name at once.
        flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
        try:
            tool_call_arr = None
            is_complete = None
            try:
                tool_calls, end_idx = partial_json_loads(
                    current_text[start_idx:], flags
                )
                if type(tool_calls) is list:
                    tool_call_arr = tool_calls
                else:
                    return DeltaMessage(content=delta_text)

                is_complete = [True] * len(tool_calls)
                if not is_complete_json(current_text[start_idx : start_idx + end_idx]):
                    is_complete[-1] = False
            except partial_json_parser.core.exceptions.MalformedJSON:
                logger.debug("not enough tokens to parse into JSON yet")
                return None

            # case -- if no tokens have been streamed for the tool, e.g.
            #   only the array brackets, stream nothing
            if not tool_call_arr:
                return None

            # select as the current tool call the one we're on the state at
            current_tool_call: dict = tool_call_arr[self.current_tool_id]

            delta = None
            # case: we are starting a new tool in the array
            #   -> array has > 0 length AND length has moved past cursor
            if len(tool_call_arr) > self.current_tool_id + 1:
                # if we're moving on to a new call, first make sure we
                # haven't missed anything in the previous one that was
                # auto-generated due to JSON completions, but wasn't
                # streamed to the client yet.
                if self.current_tool_id >= 0:
                    cur_arguments = current_tool_call.get("arguments")
                    if cur_arguments:
                        cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
                        sent = len(self.streamed_args_for_tool[self.current_tool_id])
                        argument_diff = cur_args_json[sent:]

                        logger.debug("got arguments diff: %s", argument_diff)
                        delta = DeltaMessage(
                            tool_calls=[
                                DeltaToolCall(
                                    index=self.current_tool_id,
                                    function=DeltaFunctionCall(
                                        arguments=argument_diff
                                    ).model_dump(exclude_none=True),
                                )
                            ]
                        )
                        self.streamed_args_for_tool[self.current_tool_id] += (
                            argument_diff
                        )

                # re-set stuff pertaining to progress in the current tool
                self.current_tool_id = len(tool_call_arr) - 1
                self.current_tool_name_sent = False
                self.streamed_args_for_tool.append("")
                logger.debug("starting on new tool %d", self.current_tool_id)
                return delta

            # if the current tool name hasn't been sent, send if available
            # - otherwise send nothing
            elif not self.current_tool_name_sent:
                function_name = current_tool_call.get("name")
                if function_name:
                    delta = DeltaMessage(
                        tool_calls=[
                            DeltaToolCall(
                                index=self.current_tool_id,
                                type="function",
                                id=make_tool_call_id(),
                                function=DeltaFunctionCall(
                                    name=function_name
                                ).model_dump(exclude_none=True),
                            )
                        ]
                    )
                    self.current_tool_name_sent = True

            # now we know we're on the same tool call and we're streaming
            # arguments
            else:
                cur_arguments = current_tool_call.get("arguments")

                if cur_arguments:
                    sent = len(self.streamed_args_for_tool[self.current_tool_id])
                    cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
                    prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
                        "arguments"
                    )

                    argument_diff = None
                    if is_complete[self.current_tool_id]:
                        argument_diff = cur_args_json[sent:]
                    elif prev_arguments:
                        prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
                        if cur_args_json != prev_args_json:
                            prefix = find_common_prefix(prev_args_json, cur_args_json)
                            argument_diff = prefix[sent:]

                    if argument_diff is not None:
                        delta = DeltaMessage(
                            tool_calls=[
                                DeltaToolCall(
                                    index=self.current_tool_id,
                                    function=DeltaFunctionCall(
                                        arguments=argument_diff
                                    ).model_dump(exclude_none=True),
                                )
                            ]
                        )
                        self.streamed_args_for_tool[self.current_tool_id] += (
                            argument_diff
                        )

            self.prev_tool_call_arr = tool_call_arr
            return delta

        except Exception as e:
            logger.error("Error trying to handle streaming tool call: %s", e)
            logger.debug(
                "Skipping chunk as a result of tool streaming extraction error"
            )
            return None

bot_string instance-attribute ΒΆ

bot_string = '<tool_call>'

bot_token instance-attribute ΒΆ

bot_token = '<|tool_call|>'

__init__ ΒΆ

__init__(tokenizer: AnyTokenizer)
Source code in vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py
def __init__(self, tokenizer: AnyTokenizer):
    super().__init__(tokenizer)
    # for granite 3.0, the token `<|tool_call|>`
    self.bot_token = "<|tool_call|>"
    # for granite 3.1, the string `<tool_call>`
    self.bot_string = "<tool_call>"

extract_tool_calls ΒΆ

extract_tool_calls(
    model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation
Source code in vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py
def extract_tool_calls(
    self, model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation:
    stripped = (
        model_output.strip()
        .removeprefix(self.bot_token)
        .removeprefix(self.bot_string)
        .lstrip()
    )
    if not stripped or stripped[0] != "[":
        return ExtractedToolCallInformation(
            tools_called=False, tool_calls=[], content=model_output
        )
    try:
        raw_function_calls = json.loads(stripped)
        if not isinstance(raw_function_calls, list):
            raise Exception(
                f"Expected dict or list, got {type(raw_function_calls)}"
            )

        logger.debug("Extracted %d tool calls", len(raw_function_calls))
        tool_calls = [
            ToolCall(
                type="function",
                function=FunctionCall(
                    name=function_call["name"],
                    # function call args are JSON but as a string
                    arguments=json.dumps(
                        function_call["arguments"], ensure_ascii=False
                    ),
                ),
            )
            for function_call in raw_function_calls
        ]

        return ExtractedToolCallInformation(
            tools_called=True,
            tool_calls=tool_calls,
            content=None,
        )

    except Exception as e:
        logger.error("Error in extracting tool call from response %s", e)
        return ExtractedToolCallInformation(
            tools_called=False, tool_calls=[], content=model_output
        )

extract_tool_calls_streaming ΒΆ

extract_tool_calls_streaming(
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]
Source code in vllm/entrypoints/openai/tool_parsers/granite_tool_parser.py
def extract_tool_calls_streaming(
    self,
    previous_text: str,
    current_text: str,
    delta_text: str,
    previous_token_ids: Sequence[int],
    current_token_ids: Sequence[int],
    delta_token_ids: Sequence[int],
    request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
    start_idx = consume_space(0, current_text)
    if current_text[start_idx:].startswith(self.bot_token):
        start_idx = consume_space(start_idx + len(self.bot_token), current_text)
    if current_text[start_idx:].startswith(self.bot_string):
        start_idx = consume_space(start_idx + len(self.bot_string), current_text)
    if (
        not current_text
        or start_idx >= len(current_text)
        or current_text[start_idx] != "["
    ):
        return DeltaMessage(content=delta_text)

    # bit mask flags for partial JSON parsing. If the name hasn't been
    # sent yet, don't allow sending
    # an incomplete string since OpenAI only ever (as far as I have
    # seen) allows sending the entire tool/ function name at once.
    flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
    try:
        tool_call_arr = None
        is_complete = None
        try:
            tool_calls, end_idx = partial_json_loads(
                current_text[start_idx:], flags
            )
            if type(tool_calls) is list:
                tool_call_arr = tool_calls
            else:
                return DeltaMessage(content=delta_text)

            is_complete = [True] * len(tool_calls)
            if not is_complete_json(current_text[start_idx : start_idx + end_idx]):
                is_complete[-1] = False
        except partial_json_parser.core.exceptions.MalformedJSON:
            logger.debug("not enough tokens to parse into JSON yet")
            return None

        # case -- if no tokens have been streamed for the tool, e.g.
        #   only the array brackets, stream nothing
        if not tool_call_arr:
            return None

        # select as the current tool call the one we're on the state at
        current_tool_call: dict = tool_call_arr[self.current_tool_id]

        delta = None
        # case: we are starting a new tool in the array
        #   -> array has > 0 length AND length has moved past cursor
        if len(tool_call_arr) > self.current_tool_id + 1:
            # if we're moving on to a new call, first make sure we
            # haven't missed anything in the previous one that was
            # auto-generated due to JSON completions, but wasn't
            # streamed to the client yet.
            if self.current_tool_id >= 0:
                cur_arguments = current_tool_call.get("arguments")
                if cur_arguments:
                    cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
                    sent = len(self.streamed_args_for_tool[self.current_tool_id])
                    argument_diff = cur_args_json[sent:]

                    logger.debug("got arguments diff: %s", argument_diff)
                    delta = DeltaMessage(
                        tool_calls=[
                            DeltaToolCall(
                                index=self.current_tool_id,
                                function=DeltaFunctionCall(
                                    arguments=argument_diff
                                ).model_dump(exclude_none=True),
                            )
                        ]
                    )
                    self.streamed_args_for_tool[self.current_tool_id] += (
                        argument_diff
                    )

            # re-set stuff pertaining to progress in the current tool
            self.current_tool_id = len(tool_call_arr) - 1
            self.current_tool_name_sent = False
            self.streamed_args_for_tool.append("")
            logger.debug("starting on new tool %d", self.current_tool_id)
            return delta

        # if the current tool name hasn't been sent, send if available
        # - otherwise send nothing
        elif not self.current_tool_name_sent:
            function_name = current_tool_call.get("name")
            if function_name:
                delta = DeltaMessage(
                    tool_calls=[
                        DeltaToolCall(
                            index=self.current_tool_id,
                            type="function",
                            id=make_tool_call_id(),
                            function=DeltaFunctionCall(
                                name=function_name
                            ).model_dump(exclude_none=True),
                        )
                    ]
                )
                self.current_tool_name_sent = True

        # now we know we're on the same tool call and we're streaming
        # arguments
        else:
            cur_arguments = current_tool_call.get("arguments")

            if cur_arguments:
                sent = len(self.streamed_args_for_tool[self.current_tool_id])
                cur_args_json = json.dumps(cur_arguments, ensure_ascii=False)
                prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
                    "arguments"
                )

                argument_diff = None
                if is_complete[self.current_tool_id]:
                    argument_diff = cur_args_json[sent:]
                elif prev_arguments:
                    prev_args_json = json.dumps(prev_arguments, ensure_ascii=False)
                    if cur_args_json != prev_args_json:
                        prefix = find_common_prefix(prev_args_json, cur_args_json)
                        argument_diff = prefix[sent:]

                if argument_diff is not None:
                    delta = DeltaMessage(
                        tool_calls=[
                            DeltaToolCall(
                                index=self.current_tool_id,
                                function=DeltaFunctionCall(
                                    arguments=argument_diff
                                ).model_dump(exclude_none=True),
                            )
                        ]
                    )
                    self.streamed_args_for_tool[self.current_tool_id] += (
                        argument_diff
                    )

        self.prev_tool_call_arr = tool_call_arr
        return delta

    except Exception as e:
        logger.error("Error trying to handle streaming tool call: %s", e)
        logger.debug(
            "Skipping chunk as a result of tool streaming extraction error"
        )
        return None