Skip to content

vllm.attention.layer

Attention layer.

USE_XFORMERS_OPS module-attribute

USE_XFORMERS_OPS = None

logger module-attribute

logger = init_logger(__name__)

tag_cudagraph_unsafe module-attribute

tag_cudagraph_unsafe = (cudagraph_unsafe,)

Attention

Bases: Module, AttentionLayerBase

Attention layer.

This class takes query, key, and value tensors as input. The input tensors can either contain prompt tokens or generation tokens. The class does the following:

  1. Store the input key and value tensors in the KV cache.
  2. Perform (multi-head/multi-query/grouped-query) attention.
  3. Return the output tensor.
Source code in vllm/attention/layer.py
class Attention(nn.Module, AttentionLayerBase):
    """Attention layer.

    This class takes query, key, and value tensors as input. The input tensors
    can either contain prompt tokens or generation tokens.
    The class does the following:

    1. Store the input key and value tensors in the KV cache.
    2. Perform (multi-head/multi-query/grouped-query) attention.
    3. Return the output tensor.
    """

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: Optional[int] = None,
        alibi_slopes: Optional[list[float]] = None,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        logits_soft_cap: Optional[float] = None,
        per_layer_sliding_window: Optional[int] = None,
        use_mla: bool = False,
        use_sparse: bool = False,
        prefix: str = "",
        attn_type: str = AttentionType.DECODER,
        kv_sharing_target_layer_name: Optional[str] = None,
        attn_backend: Optional[type[AttentionBackend]] = None,
        **extra_impl_args,
    ) -> None:
        """
        The KV cache is stored inside this class and is accessed via
        `self.kv_cache`.
        """
        super().__init__()
        if per_layer_sliding_window is not None:
            # per-layer sliding window
            sliding_window = per_layer_sliding_window
        elif cache_config is not None:
            # model-level sliding window
            sliding_window = cache_config.sliding_window
        else:
            sliding_window = None

        if cache_config is not None:
            kv_cache_dtype = cache_config.cache_dtype
            block_size = cache_config.block_size
            calculate_kv_scales = cache_config.calculate_kv_scales
        else:
            kv_cache_dtype = "auto"
            block_size = 16
            calculate_kv_scales = False
        if num_kv_heads is None:
            num_kv_heads = num_heads
        assert num_heads % num_kv_heads == 0, (
            f"num_heads ({num_heads}) is not divisible by num_kv_heads ({num_kv_heads})"
        )

        # The default k/v_scale is set to 1.0. This is ignored
        # when kv-cache is not fp8, and should be used with
        # kv-cache in fp8_e5m2. For kv-cache in fp8_e4m3, we
        # expect the pre-quantized k/v_scale to be loaded along
        # with the model weights.
        self.kv_cache_dtype = kv_cache_dtype
        self.calculate_kv_scales = calculate_kv_scales
        self._k_scale = torch.tensor(1.0, dtype=torch.float32)
        self._v_scale = torch.tensor(1.0, dtype=torch.float32)
        # FlashAttn doesn't support quantizing the kv-cache only
        # but requires q to be quantized as well.
        self._q_scale = torch.tensor(1.0, dtype=torch.float32)
        self._prob_scale = torch.tensor(1.0, dtype=torch.float32)

        # We also keep q/k/v_scale on host (cpu) memory for attention
        # backends that require the scales to be on host instead of on device.
        # e.g. Flashinfer
        self._q_scale_float = 1.0
        self._k_scale_float = 1.0
        self._v_scale_float = 1.0

        # The output scale on host memory. This should be the input scale of
        # the quant op after this attention layer.
        self._o_scale_float: Optional[float] = None

        self.use_mla = use_mla
        self.use_sparse = use_sparse
        self.num_heads = num_heads
        self.head_size = head_size
        self.num_kv_heads = num_kv_heads
        self.sliding_window = sliding_window
        self.has_sink = extra_impl_args.get("sinks") is not None

        quant_method = (
            quant_config.get_quant_method(self, prefix=prefix) if quant_config else None
        )
        if quant_method is not None and not isinstance(
            quant_method, UnquantizedLinearMethod
        ):
            assert isinstance(quant_method, BaseKVCacheMethod)
            # TODO (mgoin): kv cache dtype should be specified in the FP8
            # checkpoint config and become the "auto" behavior
            if self.kv_cache_dtype == "fp8_e5m2":
                raise ValueError(
                    "fp8_e5m2 kv-cache is not supported with fp8 checkpoints."
                )
            # If quantization is enabled, we make "k_scale" and "v_scale"
            # parameters so that it can be loaded from the model checkpoint.
            # The k/v_scale will then be converted back to native float32
            # values after weight loading.
            self.quant_method = quant_method
            self.quant_method.create_weights(self)

        # During model initialization, the default dtype is set as the model
        # weight and activation dtype.
        dtype = torch.get_default_dtype()
        if attn_backend is None:
            self.attn_backend = get_attn_backend(
                head_size,
                dtype,
                kv_cache_dtype,
                block_size,
                use_mla=use_mla,
                has_sink=self.has_sink,
                use_sparse=use_sparse,
            )
        else:
            self.attn_backend = attn_backend

        impl_cls = self.attn_backend.get_impl_cls()
        self.impl = impl_cls(
            num_heads,
            head_size,
            scale,
            num_kv_heads,
            alibi_slopes,
            sliding_window,
            kv_cache_dtype,
            logits_soft_cap,
            attn_type,
            kv_sharing_target_layer_name,
            **extra_impl_args,
        )
        self.backend = backend_name_to_enum(self.attn_backend.get_name())
        self.dtype = dtype

        # For cuda-alike (CUDA and ROCM) and cpu platforms, we control how
        # torch.compile works by registering the attention as one giant
        # opaque custom op. For other platforms, we directly call them
        # and let torch.compile handle them.
        self.use_direct_call = not current_platform.opaque_attention_op()

        self.use_output = self.attn_backend.accept_output_buffer
        compilation_config = get_current_vllm_config().compilation_config
        if prefix in compilation_config.static_forward_context:
            raise ValueError(f"Duplicate layer name: {prefix}")
        compilation_config.static_forward_context[prefix] = self
        self.layer_name = prefix
        self.attn_type = attn_type

        if kv_sharing_target_layer_name is not None:
            validate_kv_sharing_target(
                prefix,
                kv_sharing_target_layer_name,
                compilation_config.static_forward_context,
            )
        self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

        # use a placeholder kv cache tensor during init, which will be replaced
        # by bind_kv_cache
        # this variable will not be accessed if use_direct_call is True
        self.kv_cache = [
            torch.tensor([])
            for _ in range(
                get_current_vllm_config().parallel_config.pipeline_parallel_size
            )
        ]

        try:
            self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
            self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
            self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
        except torch.cuda.OutOfMemoryError as e:
            logger.error("Failed to initialize attention q/k/v range constants: %s", e)
            if torch.cuda.is_available():
                logger.debug("CUDA device: %s", torch.cuda.current_device())
                logger.debug(
                    "Allocated: %.2f GiB", torch.cuda.memory_allocated() / GiB_bytes
                )
                logger.debug(
                    "Reserved: %.2f GiB", torch.cuda.memory_reserved() / GiB_bytes
                )
            raise RuntimeError(
                "Failed to initialize q/k/v range constants. "
                "This may be caused by insufficient memory to allocate "
                "kv cache."
            ) from e

        # for attn backends supporting query quantization
        self.query_quant = None
        if (
            self.kv_cache_dtype.startswith("fp8")
            and self.attn_backend.supports_quant_query_input
        ):
            self.query_quant = QuantFP8(static=True, group_shape=GroupShape.PER_TENSOR)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        # For some alternate attention backends like MLA the attention output
        # shape does not match the query shape, so we optionally let the model
        # definition specify the output tensor shape.
        output_shape: Optional[torch.Size] = None,
    ) -> torch.Tensor:
        """
        The KV cache is stored inside this class and is accessed via
        `self.kv_cache`.

        Attention metadata (`attn_metadata`) is set using a context manager in
        the model runner's `execute_model` method. It is accessed via forward
        context using
        `vllm.forward_context.get_forward_context().attn_metadata`.
        """
        if self.calculate_kv_scales:
            torch.ops.vllm.maybe_calc_kv_scales(query, key, value, self.layer_name)

        output_dtype = query.dtype
        if self.query_quant is not None:
            # quantizing with a simple torch operation enables
            # torch.compile to fuse this into previous ops
            # which reduces overheads during decoding.
            # Otherwise queries are quantized using custom ops
            # which causes decoding overheads
            assert self.kv_cache_dtype in {"fp8", "fp8_e4m3"}
            query, _ = self.query_quant(query, self._q_scale)

        if self.use_output:
            output_shape = output_shape if output_shape is not None else query.shape
            output = torch.zeros(output_shape, dtype=output_dtype, device=query.device)
            hidden_size = output_shape[-1]
            # We skip reshaping query, key and value tensors for the MLA
            # backend since these tensors have different semantics and are
            # processed differently.
            if not self.use_mla:
                # Reshape the query, key, and value tensors.
                # NOTE(woosuk): We do this outside the custom op to minimize the
                # CPU overheads from the non-CUDA-graph regions.
                query = query.view(-1, self.num_heads, self.head_size)
                output = output.view(-1, self.num_heads, self.head_size)
                if key is not None:
                    key = key.view(-1, self.num_kv_heads, self.head_size)
                if value is not None:
                    value = value.view(-1, self.num_kv_heads, self.head_size)
            if self.use_direct_call:
                forward_context: ForwardContext = get_forward_context()
                attn_metadata = forward_context.attn_metadata
                if isinstance(attn_metadata, dict):
                    attn_metadata = attn_metadata[self.layer_name]
                self_kv_cache = self.kv_cache[forward_context.virtual_engine]
                self.impl.forward(
                    self, query, key, value, self_kv_cache, attn_metadata, output=output
                )
            else:
                torch.ops.vllm.unified_attention_with_output(
                    query, key, value, output, self.layer_name
                )
            return output.view(-1, hidden_size)
        else:
            if self.use_direct_call:
                forward_context = get_forward_context()
                attn_metadata = forward_context.attn_metadata
                if isinstance(attn_metadata, dict):
                    attn_metadata = attn_metadata[self.layer_name]
                self_kv_cache = self.kv_cache[forward_context.virtual_engine]
                return self.impl.forward(
                    self, query, key, value, self_kv_cache, attn_metadata
                )
            else:
                return torch.ops.vllm.unified_attention(
                    query, key, value, self.layer_name
                )

    def calc_kv_scales(self, query, key, value):
        self._q_scale.copy_(torch.abs(query).max() / self.q_range)
        self._k_scale.copy_(torch.abs(key).max() / self.k_range)
        self._v_scale.copy_(torch.abs(value).max() / self.v_range)
        self._q_scale_float = self._q_scale.item()
        self._k_scale_float = self._k_scale.item()
        self._v_scale_float = self._v_scale.item()
        # We only calculate the scales once
        self.calculate_kv_scales = False

    def extra_repr(self) -> str:
        s = f"head_size={self.impl.head_size}"  # type: ignore
        s += f", num_heads={self.impl.num_heads}"  # type: ignore
        s += f", num_kv_heads={self.impl.num_kv_heads}"  # type: ignore
        s += f", scale={self.impl.scale}"  # type: ignore
        s += f", backend={self.impl.__class__.__name__}"
        return s

    def process_weights_after_loading(self, act_dtype: torch.dtype):
        if hasattr(self.impl, "process_weights_after_loading"):
            self.impl.process_weights_after_loading(act_dtype)

        # FlashInfer requires attention sinks to be float32
        if self.backend == _Backend.FLASHINFER and hasattr(self.impl, "sinks"):
            from vllm.v1.attention.backends.flashinfer import FlashInferImpl

            assert isinstance(self.impl, FlashInferImpl)
            if self.impl.sinks is not None and self.impl.sinks.dtype != torch.float32:
                self.impl.sinks = self.impl.sinks.to(torch.float32)

    def get_attn_backend(self) -> type[AttentionBackend]:
        return self.attn_backend

_k_scale instance-attribute

_k_scale = tensor(1.0, dtype=float32)

_k_scale_float instance-attribute

_k_scale_float = 1.0

_o_scale_float instance-attribute

_o_scale_float: Optional[float] = None

_prob_scale instance-attribute

_prob_scale = tensor(1.0, dtype=float32)

_q_scale instance-attribute

_q_scale = tensor(1.0, dtype=float32)

_q_scale_float instance-attribute

_q_scale_float = 1.0

_v_scale instance-attribute

_v_scale = tensor(1.0, dtype=float32)

_v_scale_float instance-attribute

_v_scale_float = 1.0

attn_backend instance-attribute

attn_backend = get_attn_backend(
    head_size,
    dtype,
    kv_cache_dtype,
    block_size,
    use_mla=use_mla,
    has_sink=has_sink,
    use_sparse=use_sparse,
)

attn_type instance-attribute

attn_type = attn_type

backend instance-attribute

backend = backend_name_to_enum(get_name())

calculate_kv_scales instance-attribute

calculate_kv_scales = calculate_kv_scales

dtype instance-attribute

dtype = dtype

has_sink instance-attribute

has_sink = get('sinks') is not None

head_size instance-attribute

head_size = head_size

impl instance-attribute

impl = impl_cls(
    num_heads,
    head_size,
    scale,
    num_kv_heads,
    alibi_slopes,
    sliding_window,
    kv_cache_dtype,
    logits_soft_cap,
    attn_type,
    kv_sharing_target_layer_name,
    **extra_impl_args,
)

k_range instance-attribute

k_range = tensor(K_SCALE_CONSTANT, dtype=float32)

kv_cache instance-attribute

kv_cache = [
    (tensor([])) for _ in (range(pipeline_parallel_size))
]

kv_cache_dtype instance-attribute

kv_cache_dtype = kv_cache_dtype

kv_sharing_target_layer_name instance-attribute

kv_sharing_target_layer_name = kv_sharing_target_layer_name

layer_name instance-attribute

layer_name = prefix

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = num_kv_heads

q_range instance-attribute

q_range = tensor(Q_SCALE_CONSTANT, dtype=float32)

quant_method instance-attribute

quant_method = quant_method

query_quant instance-attribute

query_quant = None

sliding_window instance-attribute

sliding_window = sliding_window

use_direct_call instance-attribute

use_direct_call = not opaque_attention_op()

use_mla instance-attribute

use_mla = use_mla

use_output instance-attribute

use_output = accept_output_buffer

use_sparse instance-attribute

use_sparse = use_sparse

v_range instance-attribute

v_range = tensor(V_SCALE_CONSTANT, dtype=float32)

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: Optional[int] = None,
    alibi_slopes: Optional[list[float]] = None,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    logits_soft_cap: Optional[float] = None,
    per_layer_sliding_window: Optional[int] = None,
    use_mla: bool = False,
    use_sparse: bool = False,
    prefix: str = "",
    attn_type: str = DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
    attn_backend: Optional[type[AttentionBackend]] = None,
    **extra_impl_args,
) -> None

The KV cache is stored inside this class and is accessed via self.kv_cache.

Source code in vllm/attention/layer.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: Optional[int] = None,
    alibi_slopes: Optional[list[float]] = None,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    logits_soft_cap: Optional[float] = None,
    per_layer_sliding_window: Optional[int] = None,
    use_mla: bool = False,
    use_sparse: bool = False,
    prefix: str = "",
    attn_type: str = AttentionType.DECODER,
    kv_sharing_target_layer_name: Optional[str] = None,
    attn_backend: Optional[type[AttentionBackend]] = None,
    **extra_impl_args,
) -> None:
    """
    The KV cache is stored inside this class and is accessed via
    `self.kv_cache`.
    """
    super().__init__()
    if per_layer_sliding_window is not None:
        # per-layer sliding window
        sliding_window = per_layer_sliding_window
    elif cache_config is not None:
        # model-level sliding window
        sliding_window = cache_config.sliding_window
    else:
        sliding_window = None

    if cache_config is not None:
        kv_cache_dtype = cache_config.cache_dtype
        block_size = cache_config.block_size
        calculate_kv_scales = cache_config.calculate_kv_scales
    else:
        kv_cache_dtype = "auto"
        block_size = 16
        calculate_kv_scales = False
    if num_kv_heads is None:
        num_kv_heads = num_heads
    assert num_heads % num_kv_heads == 0, (
        f"num_heads ({num_heads}) is not divisible by num_kv_heads ({num_kv_heads})"
    )

    # The default k/v_scale is set to 1.0. This is ignored
    # when kv-cache is not fp8, and should be used with
    # kv-cache in fp8_e5m2. For kv-cache in fp8_e4m3, we
    # expect the pre-quantized k/v_scale to be loaded along
    # with the model weights.
    self.kv_cache_dtype = kv_cache_dtype
    self.calculate_kv_scales = calculate_kv_scales
    self._k_scale = torch.tensor(1.0, dtype=torch.float32)
    self._v_scale = torch.tensor(1.0, dtype=torch.float32)
    # FlashAttn doesn't support quantizing the kv-cache only
    # but requires q to be quantized as well.
    self._q_scale = torch.tensor(1.0, dtype=torch.float32)
    self._prob_scale = torch.tensor(1.0, dtype=torch.float32)

    # We also keep q/k/v_scale on host (cpu) memory for attention
    # backends that require the scales to be on host instead of on device.
    # e.g. Flashinfer
    self._q_scale_float = 1.0
    self._k_scale_float = 1.0
    self._v_scale_float = 1.0

    # The output scale on host memory. This should be the input scale of
    # the quant op after this attention layer.
    self._o_scale_float: Optional[float] = None

    self.use_mla = use_mla
    self.use_sparse = use_sparse
    self.num_heads = num_heads
    self.head_size = head_size
    self.num_kv_heads = num_kv_heads
    self.sliding_window = sliding_window
    self.has_sink = extra_impl_args.get("sinks") is not None

    quant_method = (
        quant_config.get_quant_method(self, prefix=prefix) if quant_config else None
    )
    if quant_method is not None and not isinstance(
        quant_method, UnquantizedLinearMethod
    ):
        assert isinstance(quant_method, BaseKVCacheMethod)
        # TODO (mgoin): kv cache dtype should be specified in the FP8
        # checkpoint config and become the "auto" behavior
        if self.kv_cache_dtype == "fp8_e5m2":
            raise ValueError(
                "fp8_e5m2 kv-cache is not supported with fp8 checkpoints."
            )
        # If quantization is enabled, we make "k_scale" and "v_scale"
        # parameters so that it can be loaded from the model checkpoint.
        # The k/v_scale will then be converted back to native float32
        # values after weight loading.
        self.quant_method = quant_method
        self.quant_method.create_weights(self)

    # During model initialization, the default dtype is set as the model
    # weight and activation dtype.
    dtype = torch.get_default_dtype()
    if attn_backend is None:
        self.attn_backend = get_attn_backend(
            head_size,
            dtype,
            kv_cache_dtype,
            block_size,
            use_mla=use_mla,
            has_sink=self.has_sink,
            use_sparse=use_sparse,
        )
    else:
        self.attn_backend = attn_backend

    impl_cls = self.attn_backend.get_impl_cls()
    self.impl = impl_cls(
        num_heads,
        head_size,
        scale,
        num_kv_heads,
        alibi_slopes,
        sliding_window,
        kv_cache_dtype,
        logits_soft_cap,
        attn_type,
        kv_sharing_target_layer_name,
        **extra_impl_args,
    )
    self.backend = backend_name_to_enum(self.attn_backend.get_name())
    self.dtype = dtype

    # For cuda-alike (CUDA and ROCM) and cpu platforms, we control how
    # torch.compile works by registering the attention as one giant
    # opaque custom op. For other platforms, we directly call them
    # and let torch.compile handle them.
    self.use_direct_call = not current_platform.opaque_attention_op()

    self.use_output = self.attn_backend.accept_output_buffer
    compilation_config = get_current_vllm_config().compilation_config
    if prefix in compilation_config.static_forward_context:
        raise ValueError(f"Duplicate layer name: {prefix}")
    compilation_config.static_forward_context[prefix] = self
    self.layer_name = prefix
    self.attn_type = attn_type

    if kv_sharing_target_layer_name is not None:
        validate_kv_sharing_target(
            prefix,
            kv_sharing_target_layer_name,
            compilation_config.static_forward_context,
        )
    self.kv_sharing_target_layer_name = kv_sharing_target_layer_name

    # use a placeholder kv cache tensor during init, which will be replaced
    # by bind_kv_cache
    # this variable will not be accessed if use_direct_call is True
    self.kv_cache = [
        torch.tensor([])
        for _ in range(
            get_current_vllm_config().parallel_config.pipeline_parallel_size
        )
    ]

    try:
        self.q_range = torch.tensor(envs.Q_SCALE_CONSTANT, dtype=torch.float32)
        self.k_range = torch.tensor(envs.K_SCALE_CONSTANT, dtype=torch.float32)
        self.v_range = torch.tensor(envs.V_SCALE_CONSTANT, dtype=torch.float32)
    except torch.cuda.OutOfMemoryError as e:
        logger.error("Failed to initialize attention q/k/v range constants: %s", e)
        if torch.cuda.is_available():
            logger.debug("CUDA device: %s", torch.cuda.current_device())
            logger.debug(
                "Allocated: %.2f GiB", torch.cuda.memory_allocated() / GiB_bytes
            )
            logger.debug(
                "Reserved: %.2f GiB", torch.cuda.memory_reserved() / GiB_bytes
            )
        raise RuntimeError(
            "Failed to initialize q/k/v range constants. "
            "This may be caused by insufficient memory to allocate "
            "kv cache."
        ) from e

    # for attn backends supporting query quantization
    self.query_quant = None
    if (
        self.kv_cache_dtype.startswith("fp8")
        and self.attn_backend.supports_quant_query_input
    ):
        self.query_quant = QuantFP8(static=True, group_shape=GroupShape.PER_TENSOR)

calc_kv_scales

calc_kv_scales(query, key, value)
Source code in vllm/attention/layer.py
def calc_kv_scales(self, query, key, value):
    self._q_scale.copy_(torch.abs(query).max() / self.q_range)
    self._k_scale.copy_(torch.abs(key).max() / self.k_range)
    self._v_scale.copy_(torch.abs(value).max() / self.v_range)
    self._q_scale_float = self._q_scale.item()
    self._k_scale_float = self._k_scale.item()
    self._v_scale_float = self._v_scale.item()
    # We only calculate the scales once
    self.calculate_kv_scales = False

extra_repr

extra_repr() -> str
Source code in vllm/attention/layer.py
def extra_repr(self) -> str:
    s = f"head_size={self.impl.head_size}"  # type: ignore
    s += f", num_heads={self.impl.num_heads}"  # type: ignore
    s += f", num_kv_heads={self.impl.num_kv_heads}"  # type: ignore
    s += f", scale={self.impl.scale}"  # type: ignore
    s += f", backend={self.impl.__class__.__name__}"
    return s

forward

forward(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    output_shape: Optional[Size] = None,
) -> Tensor

The KV cache is stored inside this class and is accessed via self.kv_cache.

Attention metadata (attn_metadata) is set using a context manager in the model runner's execute_model method. It is accessed via forward context using vllm.forward_context.get_forward_context().attn_metadata.

Source code in vllm/attention/layer.py
def forward(
    self,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    # For some alternate attention backends like MLA the attention output
    # shape does not match the query shape, so we optionally let the model
    # definition specify the output tensor shape.
    output_shape: Optional[torch.Size] = None,
) -> torch.Tensor:
    """
    The KV cache is stored inside this class and is accessed via
    `self.kv_cache`.

    Attention metadata (`attn_metadata`) is set using a context manager in
    the model runner's `execute_model` method. It is accessed via forward
    context using
    `vllm.forward_context.get_forward_context().attn_metadata`.
    """
    if self.calculate_kv_scales:
        torch.ops.vllm.maybe_calc_kv_scales(query, key, value, self.layer_name)

    output_dtype = query.dtype
    if self.query_quant is not None:
        # quantizing with a simple torch operation enables
        # torch.compile to fuse this into previous ops
        # which reduces overheads during decoding.
        # Otherwise queries are quantized using custom ops
        # which causes decoding overheads
        assert self.kv_cache_dtype in {"fp8", "fp8_e4m3"}
        query, _ = self.query_quant(query, self._q_scale)

    if self.use_output:
        output_shape = output_shape if output_shape is not None else query.shape
        output = torch.zeros(output_shape, dtype=output_dtype, device=query.device)
        hidden_size = output_shape[-1]
        # We skip reshaping query, key and value tensors for the MLA
        # backend since these tensors have different semantics and are
        # processed differently.
        if not self.use_mla:
            # Reshape the query, key, and value tensors.
            # NOTE(woosuk): We do this outside the custom op to minimize the
            # CPU overheads from the non-CUDA-graph regions.
            query = query.view(-1, self.num_heads, self.head_size)
            output = output.view(-1, self.num_heads, self.head_size)
            if key is not None:
                key = key.view(-1, self.num_kv_heads, self.head_size)
            if value is not None:
                value = value.view(-1, self.num_kv_heads, self.head_size)
        if self.use_direct_call:
            forward_context: ForwardContext = get_forward_context()
            attn_metadata = forward_context.attn_metadata
            if isinstance(attn_metadata, dict):
                attn_metadata = attn_metadata[self.layer_name]
            self_kv_cache = self.kv_cache[forward_context.virtual_engine]
            self.impl.forward(
                self, query, key, value, self_kv_cache, attn_metadata, output=output
            )
        else:
            torch.ops.vllm.unified_attention_with_output(
                query, key, value, output, self.layer_name
            )
        return output.view(-1, hidden_size)
    else:
        if self.use_direct_call:
            forward_context = get_forward_context()
            attn_metadata = forward_context.attn_metadata
            if isinstance(attn_metadata, dict):
                attn_metadata = attn_metadata[self.layer_name]
            self_kv_cache = self.kv_cache[forward_context.virtual_engine]
            return self.impl.forward(
                self, query, key, value, self_kv_cache, attn_metadata
            )
        else:
            return torch.ops.vllm.unified_attention(
                query, key, value, self.layer_name
            )

get_attn_backend

get_attn_backend() -> type[AttentionBackend]
Source code in vllm/attention/layer.py
def get_attn_backend(self) -> type[AttentionBackend]:
    return self.attn_backend

process_weights_after_loading

process_weights_after_loading(act_dtype: dtype)
Source code in vllm/attention/layer.py
def process_weights_after_loading(self, act_dtype: torch.dtype):
    if hasattr(self.impl, "process_weights_after_loading"):
        self.impl.process_weights_after_loading(act_dtype)

    # FlashInfer requires attention sinks to be float32
    if self.backend == _Backend.FLASHINFER and hasattr(self.impl, "sinks"):
        from vllm.v1.attention.backends.flashinfer import FlashInferImpl

        assert isinstance(self.impl, FlashInferImpl)
        if self.impl.sinks is not None and self.impl.sinks.dtype != torch.float32:
            self.impl.sinks = self.impl.sinks.to(torch.float32)

MultiHeadAttention

Bases: Module

Multi-headed attention without any cache, used for ViT.

Source code in vllm/attention/layer.py
class MultiHeadAttention(nn.Module):
    """Multi-headed attention without any cache, used for ViT."""

    def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: Optional[int] = None,
        # This has no effect, it is only here to make it easier to swap
        # between Attention and MultiHeadAttention
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.num_heads = num_heads
        self.head_size = head_size
        self.scale = scale
        self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
        self.layer_name = prefix

        assert self.num_heads % self.num_kv_heads == 0, (
            f"num_heads ({self.num_heads}) is not "
            f"divisible by num_kv_heads ({self.num_kv_heads})"
        )
        self.num_queries_per_kv = self.num_heads // self.num_kv_heads

        # During model initialization, the default dtype is set as the model
        # weight and activation dtype.
        dtype = torch.get_default_dtype()

        # Determine the attention backend
        backend = get_vit_attn_backend(head_size=head_size, dtype=dtype)

        # Some auto-selected backends can be upgraded
        # to upstream flash attention if available.
        # If vllm native fa is selected, we use it directly.
        use_upstream_fa = False

        if current_platform.is_xpu():
            # currently, only torch_sdpa is supported on xpu
            self.attn_backend = _Backend.TORCH_SDPA
        else:
            self.attn_backend = (
                backend
                if backend
                in {
                    _Backend.TORCH_SDPA,
                    _Backend.XFORMERS,
                    _Backend.PALLAS,
                    _Backend.ROCM_AITER_FA,
                    _Backend.FLASH_ATTN,
                }
                else _Backend.TORCH_SDPA
            )

        self.attn_backend, self._flash_attn_varlen_func = (
            maybe_get_vit_flash_attn_backend(
                self.attn_backend,
                use_upstream_fa,
            )
        )

        if self.attn_backend == _Backend.XFORMERS and not check_xformers_availability():
            self.attn_backend = _Backend.TORCH_SDPA

        self.is_flash_attn_backend = self.attn_backend in {
            _Backend.FLASH_ATTN,
            _Backend.ROCM_AITER_FA,
        }

        # this condition is just to make sure that the
        # use_upstream_fa in the log is correct
        if current_platform.is_rocm() and self.attn_backend == _Backend.FLASH_ATTN:
            use_upstream_fa = True

        logger.info_once(
            f"MultiHeadAttention attn_backend: {self.attn_backend}, "
            f"use_upstream_fa: {use_upstream_fa}"
        )

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
    ) -> torch.Tensor:
        """Input shape:
        (batch_size x seq_len x hidden_size) or
        (batch_size x seq_len x num_heads x head_size)
        """
        bsz, q_len = query.size()[:2]
        kv_len = key.size(1)

        query = query.view(bsz, q_len, self.num_heads, self.head_size)
        key = key.view(bsz, kv_len, self.num_kv_heads, self.head_size)
        value = value.view(bsz, kv_len, self.num_kv_heads, self.head_size)

        if (num_repeat := self.num_queries_per_kv) > 1:
            # Handle MQA and GQA
            key = torch.repeat_interleave(key, num_repeat, dim=2)
            value = torch.repeat_interleave(value, num_repeat, dim=2)

        if self.is_flash_attn_backend:
            cu_seqlens_q = torch.arange(
                0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=query.device
            )
            cu_seqlens_k = torch.arange(
                0, (bsz + 1) * kv_len, step=kv_len, dtype=torch.int32, device=key.device
            )

            out = self._flash_attn_varlen_func(
                query.flatten(0, 1),
                key.flatten(0, 1),
                value.flatten(0, 1),
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=q_len,
                max_seqlen_k=kv_len,
                softmax_scale=self.scale,
            )
        elif self.attn_backend == _Backend.XFORMERS:
            from xformers import ops as xops

            out = xops.memory_efficient_attention_forward(
                query, key, value, scale=self.scale
            )
        elif self.attn_backend == _Backend.TORCH_SDPA:
            query, key, value = (x.transpose(1, 2) for x in (query, key, value))
            out = F.scaled_dot_product_attention(query, key, value, scale=self.scale)
            out = out.transpose(1, 2)
        elif self.attn_backend == _Backend.PALLAS:
            query, key, value = (x.transpose(1, 2) for x in (query, key, value))
            from torch_xla.experimental.custom_kernel import flash_attention

            out = flash_attention(query, key, value, sm_scale=self.scale)
            out = out.transpose(1, 2)
        else:
            # ViT attention hasn't supported this backend yet
            raise NotImplementedError(
                f"ViT attention hasn't supported {self.attn_backend} backend yet."
            )

        return out.reshape(bsz, q_len, -1)

attn_backend instance-attribute

attn_backend = TORCH_SDPA

head_size instance-attribute

head_size = head_size

is_flash_attn_backend instance-attribute

is_flash_attn_backend = attn_backend in {
    FLASH_ATTN,
    ROCM_AITER_FA,
}

layer_name instance-attribute

layer_name = prefix

num_heads instance-attribute

num_heads = num_heads

num_kv_heads instance-attribute

num_kv_heads = (
    num_heads if num_kv_heads is None else num_kv_heads
)

num_queries_per_kv instance-attribute

num_queries_per_kv = num_heads // num_kv_heads

scale instance-attribute

scale = scale

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: Optional[int] = None,
    prefix: str = "",
) -> None
Source code in vllm/attention/layer.py
def __init__(
    self,
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: Optional[int] = None,
    # This has no effect, it is only here to make it easier to swap
    # between Attention and MultiHeadAttention
    prefix: str = "",
) -> None:
    super().__init__()
    self.num_heads = num_heads
    self.head_size = head_size
    self.scale = scale
    self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
    self.layer_name = prefix

    assert self.num_heads % self.num_kv_heads == 0, (
        f"num_heads ({self.num_heads}) is not "
        f"divisible by num_kv_heads ({self.num_kv_heads})"
    )
    self.num_queries_per_kv = self.num_heads // self.num_kv_heads

    # During model initialization, the default dtype is set as the model
    # weight and activation dtype.
    dtype = torch.get_default_dtype()

    # Determine the attention backend
    backend = get_vit_attn_backend(head_size=head_size, dtype=dtype)

    # Some auto-selected backends can be upgraded
    # to upstream flash attention if available.
    # If vllm native fa is selected, we use it directly.
    use_upstream_fa = False

    if current_platform.is_xpu():
        # currently, only torch_sdpa is supported on xpu
        self.attn_backend = _Backend.TORCH_SDPA
    else:
        self.attn_backend = (
            backend
            if backend
            in {
                _Backend.TORCH_SDPA,
                _Backend.XFORMERS,
                _Backend.PALLAS,
                _Backend.ROCM_AITER_FA,
                _Backend.FLASH_ATTN,
            }
            else _Backend.TORCH_SDPA
        )

    self.attn_backend, self._flash_attn_varlen_func = (
        maybe_get_vit_flash_attn_backend(
            self.attn_backend,
            use_upstream_fa,
        )
    )

    if self.attn_backend == _Backend.XFORMERS and not check_xformers_availability():
        self.attn_backend = _Backend.TORCH_SDPA

    self.is_flash_attn_backend = self.attn_backend in {
        _Backend.FLASH_ATTN,
        _Backend.ROCM_AITER_FA,
    }

    # this condition is just to make sure that the
    # use_upstream_fa in the log is correct
    if current_platform.is_rocm() and self.attn_backend == _Backend.FLASH_ATTN:
        use_upstream_fa = True

    logger.info_once(
        f"MultiHeadAttention attn_backend: {self.attn_backend}, "
        f"use_upstream_fa: {use_upstream_fa}"
    )

forward

forward(
    query: Tensor, key: Tensor, value: Tensor
) -> Tensor

Input shape: (batch_size x seq_len x hidden_size) or (batch_size x seq_len x num_heads x head_size)

Source code in vllm/attention/layer.py
def forward(
    self,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
) -> torch.Tensor:
    """Input shape:
    (batch_size x seq_len x hidden_size) or
    (batch_size x seq_len x num_heads x head_size)
    """
    bsz, q_len = query.size()[:2]
    kv_len = key.size(1)

    query = query.view(bsz, q_len, self.num_heads, self.head_size)
    key = key.view(bsz, kv_len, self.num_kv_heads, self.head_size)
    value = value.view(bsz, kv_len, self.num_kv_heads, self.head_size)

    if (num_repeat := self.num_queries_per_kv) > 1:
        # Handle MQA and GQA
        key = torch.repeat_interleave(key, num_repeat, dim=2)
        value = torch.repeat_interleave(value, num_repeat, dim=2)

    if self.is_flash_attn_backend:
        cu_seqlens_q = torch.arange(
            0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=query.device
        )
        cu_seqlens_k = torch.arange(
            0, (bsz + 1) * kv_len, step=kv_len, dtype=torch.int32, device=key.device
        )

        out = self._flash_attn_varlen_func(
            query.flatten(0, 1),
            key.flatten(0, 1),
            value.flatten(0, 1),
            cu_seqlens_q=cu_seqlens_q,
            cu_seqlens_k=cu_seqlens_k,
            max_seqlen_q=q_len,
            max_seqlen_k=kv_len,
            softmax_scale=self.scale,
        )
    elif self.attn_backend == _Backend.XFORMERS:
        from xformers import ops as xops

        out = xops.memory_efficient_attention_forward(
            query, key, value, scale=self.scale
        )
    elif self.attn_backend == _Backend.TORCH_SDPA:
        query, key, value = (x.transpose(1, 2) for x in (query, key, value))
        out = F.scaled_dot_product_attention(query, key, value, scale=self.scale)
        out = out.transpose(1, 2)
    elif self.attn_backend == _Backend.PALLAS:
        query, key, value = (x.transpose(1, 2) for x in (query, key, value))
        from torch_xla.experimental.custom_kernel import flash_attention

        out = flash_attention(query, key, value, sm_scale=self.scale)
        out = out.transpose(1, 2)
    else:
        # ViT attention hasn't supported this backend yet
        raise NotImplementedError(
            f"ViT attention hasn't supported {self.attn_backend} backend yet."
        )

    return out.reshape(bsz, q_len, -1)

check_upstream_fa_availability

check_upstream_fa_availability(dtype: dtype)
Source code in vllm/attention/layer.py
def check_upstream_fa_availability(dtype: torch.dtype):
    if (
        dtype in (torch.float16, torch.bfloat16)
        and current_platform.is_cuda()
        and current_platform.has_device_capability(80)
    ):
        from transformers.utils import is_flash_attn_2_available

        return is_flash_attn_2_available()
    if current_platform.is_rocm():
        from importlib.util import find_spec

        return find_spec("flash_attn") is not None
    return False

check_xformers_availability

check_xformers_availability()
Source code in vllm/attention/layer.py
def check_xformers_availability():
    global USE_XFORMERS_OPS
    if USE_XFORMERS_OPS is not None:
        return USE_XFORMERS_OPS

    if current_platform.is_cuda() and current_platform.has_device_capability(100):
        # Xformers FA is not compatible with B200
        USE_XFORMERS_OPS = False
    else:
        try:
            from importlib.util import find_spec

            find_spec("xformers.ops")
            USE_XFORMERS_OPS = True
        except ImportError:
            USE_XFORMERS_OPS = False

    # the warning only needs to be shown once
    if not USE_XFORMERS_OPS:
        logger.warning("Xformers is not available, falling back.")

    return USE_XFORMERS_OPS

maybe_calc_kv_scales

maybe_calc_kv_scales(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    layer_name: str,
) -> None
Source code in vllm/attention/layer.py
def maybe_calc_kv_scales(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    layer_name: str,
) -> None:
    forward_context: ForwardContext = get_forward_context()
    attn_metadata = forward_context.attn_metadata

    if isinstance(attn_metadata, dict):
        attn_metadata = attn_metadata[layer_name]

    if attn_metadata is None or not getattr(
        attn_metadata, "enable_kv_scales_calculation", False
    ):
        return

    self = forward_context.no_compile_layers[layer_name]
    self.calc_kv_scales(query, key, value)

maybe_calc_kv_scales_fake

maybe_calc_kv_scales_fake(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    layer_name: str,
) -> None
Source code in vllm/attention/layer.py
def maybe_calc_kv_scales_fake(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    layer_name: str,
) -> None:
    return

maybe_get_vit_flash_attn_backend

maybe_get_vit_flash_attn_backend(
    attn_backend: _Backend, use_upstream_fa: bool
) -> tuple[_Backend, Callable]
Source code in vllm/attention/layer.py
def maybe_get_vit_flash_attn_backend(
    attn_backend: _Backend, use_upstream_fa: bool
) -> tuple[_Backend, Callable]:
    if (
        attn_backend != _Backend.FLASH_ATTN
        and attn_backend != _Backend.ROCM_AITER_FA
        and check_upstream_fa_availability(torch.get_default_dtype())
    ):
        attn_backend = _Backend.FLASH_ATTN
        use_upstream_fa = True

    if current_platform.is_rocm() and attn_backend == _Backend.FLASH_ATTN:
        use_upstream_fa = True

    if attn_backend in {_Backend.FLASH_ATTN, _Backend.ROCM_AITER_FA}:
        if attn_backend == _Backend.ROCM_AITER_FA:
            from aiter import flash_attn_varlen_func
        else:
            if use_upstream_fa:
                from flash_attn import flash_attn_varlen_func
            else:
                from vllm.vllm_flash_attn import flash_attn_varlen_func
    else:
        flash_attn_varlen_func = None

    return attn_backend, flash_attn_varlen_func

maybe_save_kv_layer_to_connector

maybe_save_kv_layer_to_connector(
    layer_name: str, kv_cache_layer: list[Tensor]
)
Source code in vllm/attention/layer.py
def maybe_save_kv_layer_to_connector(
    layer_name: str,
    kv_cache_layer: list[torch.Tensor],
):
    if not has_kv_transfer_group() or not is_v1_kv_transfer_group():
        return

    connector = get_kv_transfer_group()

    forward_context: ForwardContext = get_forward_context()
    attn_metadata = forward_context.attn_metadata
    if attn_metadata is None:
        return
    assert isinstance(attn_metadata, dict)
    connector.save_kv_layer(layer_name, kv_cache_layer, attn_metadata[layer_name])

unified_attention

unified_attention(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    layer_name: str,
) -> Tensor
Source code in vllm/attention/layer.py
def unified_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    layer_name: str,
) -> torch.Tensor:
    wait_for_kv_layer_from_connector(layer_name)

    forward_context: ForwardContext = get_forward_context()
    attn_metadata = forward_context.attn_metadata
    if isinstance(attn_metadata, dict):
        attn_metadata = attn_metadata[layer_name]
    self = forward_context.no_compile_layers[layer_name]
    kv_cache = self.kv_cache[forward_context.virtual_engine]
    output = self.impl.forward(self, query, key, value, kv_cache, attn_metadata)

    maybe_save_kv_layer_to_connector(layer_name, kv_cache)
    return output

unified_attention_fake

unified_attention_fake(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    layer_name: str,
) -> Tensor
Source code in vllm/attention/layer.py
def unified_attention_fake(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    layer_name: str,
) -> torch.Tensor:
    return torch.empty_like(query).contiguous()

unified_attention_with_output

unified_attention_with_output(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    output: Tensor,
    layer_name: str,
    output_scale: Optional[Tensor] = None,
    output_block_scale: Optional[Tensor] = None,
) -> None
Source code in vllm/attention/layer.py
def unified_attention_with_output(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    output: torch.Tensor,
    layer_name: str,
    output_scale: Optional[torch.Tensor] = None,
    output_block_scale: Optional[torch.Tensor] = None,
) -> None:
    wait_for_kv_layer_from_connector(layer_name)
    forward_context: ForwardContext = get_forward_context()
    attn_metadata = forward_context.attn_metadata
    if isinstance(attn_metadata, dict):
        attn_metadata = attn_metadata[layer_name]
    self = forward_context.no_compile_layers[layer_name]
    kv_cache = self.kv_cache[forward_context.virtual_engine]
    self.impl.forward(
        self,
        query,
        key,
        value,
        kv_cache,
        attn_metadata,
        output=output,
        output_scale=output_scale,
        output_block_scale=output_block_scale,
    )

    maybe_save_kv_layer_to_connector(layer_name, kv_cache)

unified_attention_with_output_fake

unified_attention_with_output_fake(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    output: Tensor,
    layer_name: str,
    output_scale: Optional[Tensor] = None,
    output_block_scale: Optional[Tensor] = None,
) -> None
Source code in vllm/attention/layer.py
def unified_attention_with_output_fake(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    output: torch.Tensor,
    layer_name: str,
    output_scale: Optional[torch.Tensor] = None,
    output_block_scale: Optional[torch.Tensor] = None,
) -> None:
    return

wait_for_kv_layer_from_connector

wait_for_kv_layer_from_connector(layer_name: str)
Source code in vllm/attention/layer.py
def wait_for_kv_layer_from_connector(layer_name: str):
    if not has_kv_transfer_group() or not is_v1_kv_transfer_group():
        return

    connector = get_kv_transfer_group()

    forward_context: ForwardContext = get_forward_context()
    attn_metadata = forward_context.attn_metadata
    if attn_metadata is None:
        return
    assert isinstance(attn_metadata, dict)
    connector.wait_for_layer_load(layer_name)